

Intralogistik

Systeme, Planung, Entwicklungstrends

Prof. Dr.-Ing. Jochen Kreutzfeldt, BSc Jacob Möcke

Institut für Technische Logistik – TU Hamburg

Institut	Übersicht	Lagertechnologien	Fahrzeuge	Planungsmethodik	Entwicklungstrends
----------	-----------	-------------------	-----------	------------------	--------------------

Das Institut für Technische Logistik bietet Vorlesungen für Bachelor- und Masterstudierende an.

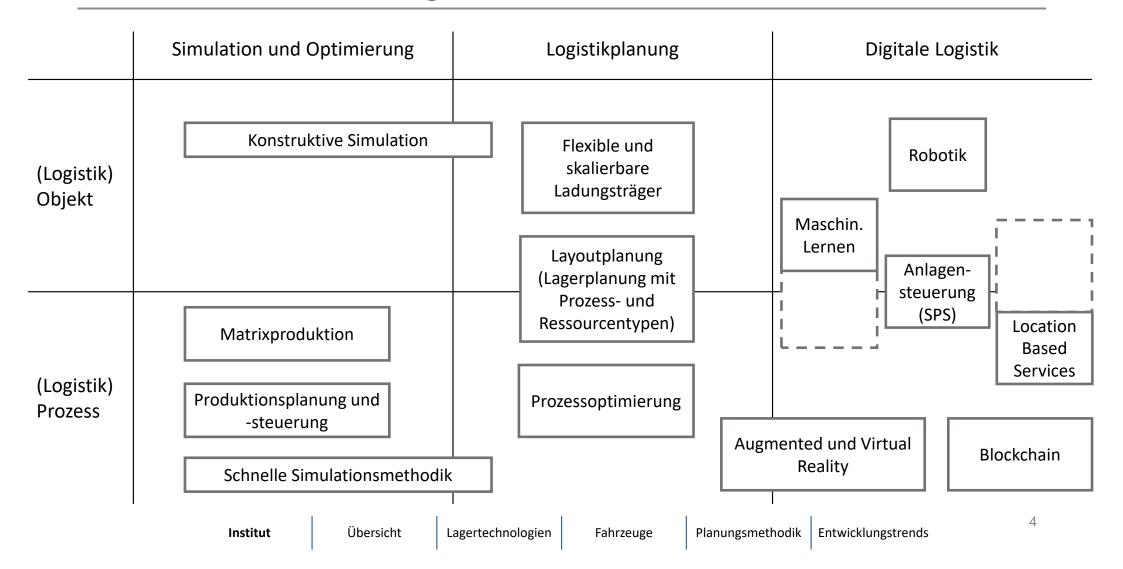
Bachelor	Technische Logistik Pflichtvorlesung Sommersemester	1
	Logistische Systeme – Industrie 4.0 Wahlpflichtfach Wintersemester	1
	Simulation in der Intralogistik Wahlpflichtfach Sommersemester	
	Objektorientierte Programmierung in der Logistik Wahlpflichtfach Wintersemester	Java
Master	Fabrikplanung / Produktionslogistik Wahlpflichtfach Wintersemester	
	Labor Technische Logistik Wahlpflichtfach Sommersemester	1

Bildquellen: Jungheinrich http://logos-download.com/10695-java-logo-download.html

Institut

Übersicht

Lagertechnologien


Fahrzeuge

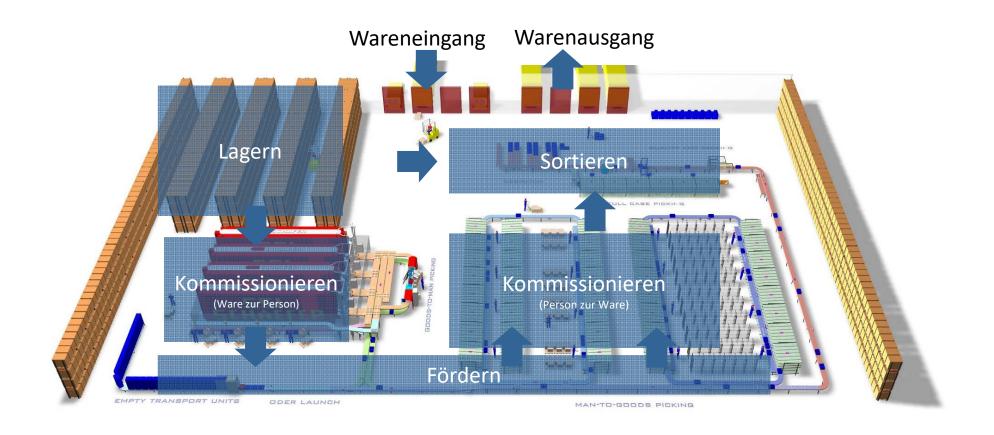
Planungsmethodik

Entwicklungstrends



Das Institut für Technische Logistik arbeitet auf drei Arbeitsfeldern.

Institut für Technische Logistik seit 03/2017 in der Theodor-Yorck-Straße 8.



5

Entwicklungstrends

Die wesentlichen Themen der Intralogistik sind Fördern, Lagern, Kommissionieren und Sortieren

Quelle: SSI Schäfer

Institut

Übersicht

Lagertechnologien

Fahrzeuge

Planungsmethodik

Entwicklungstrends

Das Produktionsvolumen bei Unternehmen der Fördertechnik und Intralogistik stieg seit der Krise 2009 kontinuierlich an und stagniert voraussichtlich in 2019.

Produktionsvolumen – Deutschland in Mrd. Euro

Unterscheidung Stetigförderer und Unstetigförderer

Förderer

Unstetigförderer

Kran

Bandförderer

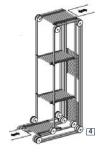
Rollenförderer

Gabelstabler

Shuttle im AKL*

Automated guided Vehicle (AGV)

Elektro-Hängebahn


Vertikalförderer

Quellen:

Stetigförderer

1 Still GmbH

*AKL: Automatisches Kleinteilelager 2 Stingray

Regaltechnik (1/2)

Fachbodenregal

Palettenregal

Kragarmregal

Verschieberegal

Quellen: 1 Jungheinrich AG

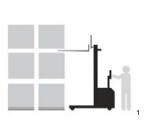
Regaltechnik (2/2)

AKL - Regalbediengerät

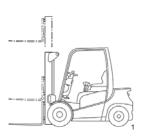
Autostore

Quellen: 1 Jungheinrich AG | 2 SSI Schäfer 3 AutoStore | 4 Swisslog

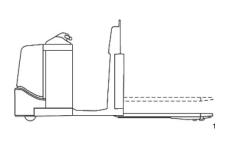
AKL - Shuttle



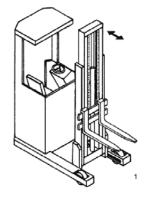
CarryPick


Fahrzeuge (1/2)

Handgabelhochhubwagen



Front-Gabelstapler



Niederflurstapler

Schubmaststapler

Quellen:

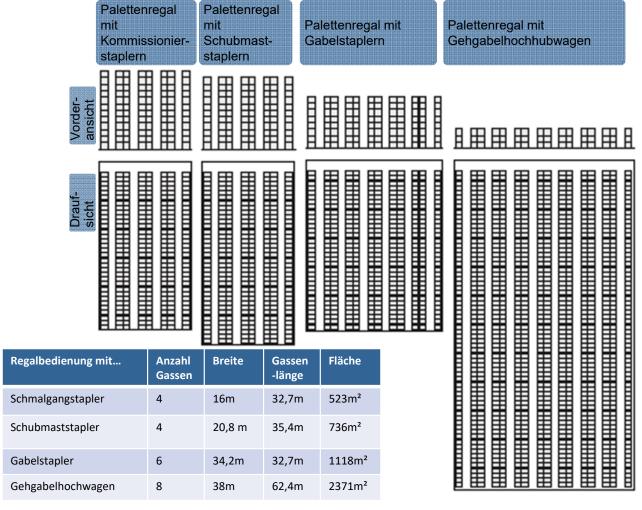
- 1 ten Hompel, Michael; Schmidt, Thorsten; Nagel, Lars (2007): Materialflusssysteme. Förder- und Lagertechnik. S. 123; 156ff.
- 2 Jungheinrich AG 3 Still GmbH

Fahrzeuge (2/2)

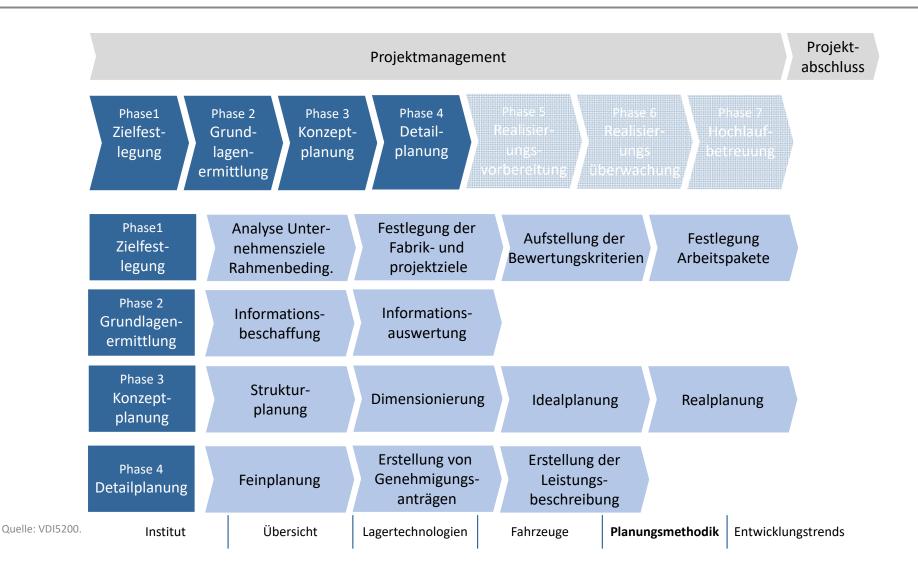
Schmalgangstapler

Flurförderzeug - autonom

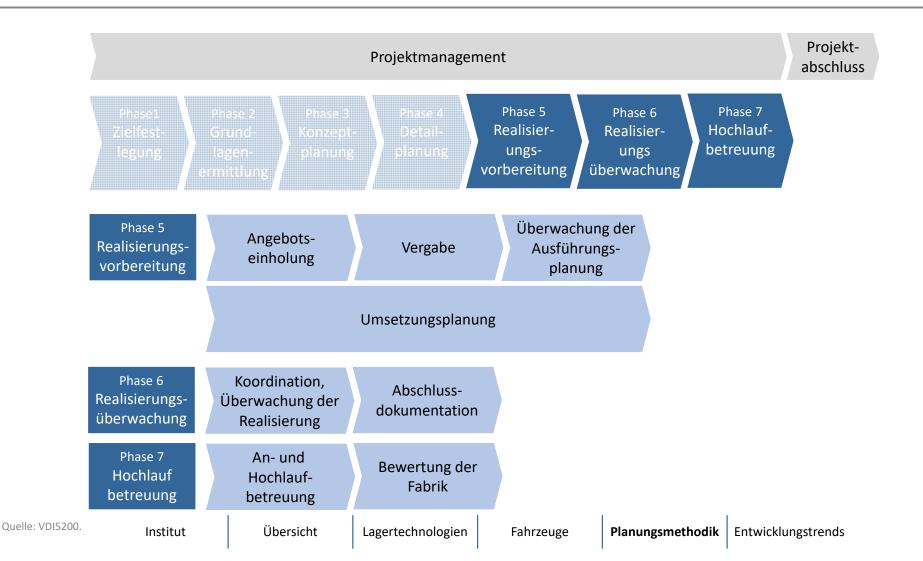
Quellen: 1 Jungheinrich AG 2 SSI Schäfer


Routenzug

Automated Guided Vehicle (AGV)

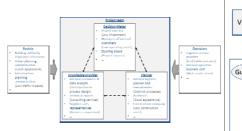


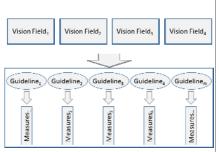
Die Auswahl eines Gabelstaplertyps bestimmt wesentlich die Arbeitsgangbreiten und Lagerhöhen.

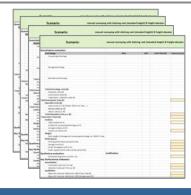


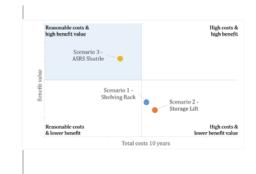
Quellen:

Die VDI5200 gliedert das Fabrikplanungsvorgehen in sieben Phasen. (1 von 2)




Die VDI5200 gliedert das Fabrikplanungsvorgehen in sieben Phasen. (2 von 2)


16


Die Stakeholder-Analyse und der Planungskodex stellen in Kombination mit den vorgeschlagenen Planungsschritten ein ganzheitliches und industriell anwendbares Planungsvorgehen dar, das zusätzlich Maßnahmen zur Verringerung von Planungsunsicherheiten integriert.

Stakeholder-Analyse

- Überblick der relevanten Stakeholder
- Abbilden der Interessen innerhalb des **Projektteams**
- Integration der Interessen externer Stakeholder

Planungskodex

- Festlegung der Planungsziele
- Berücksichtigung der Interessen von Gesellschaft und Betreibern
- Erinnert in späteren Projektphasen an die Planungsziele

Morphologischer Kasten Szenarienentwicklung

- Auflistung von technischen Lösungen ie Prozessschritt
- **Entwicklung erster** Entscheidungskriterien
- Vorauswahl möglicher Lösungen

- Entwicklung von Szenarien basierend auf der Vorauswahl
- Detaillierung zur weiteren Entscheidungsunterstützung
- Sehr komplexe und zeitaufwändige Prozessschritte

Evaluation

- Greift die im Planungskodes dokumentierten Kriterien auf
- Berücksichtigt quantitative und qualitative Kriterien
- Kostenabschätzung

Planungsmethodik

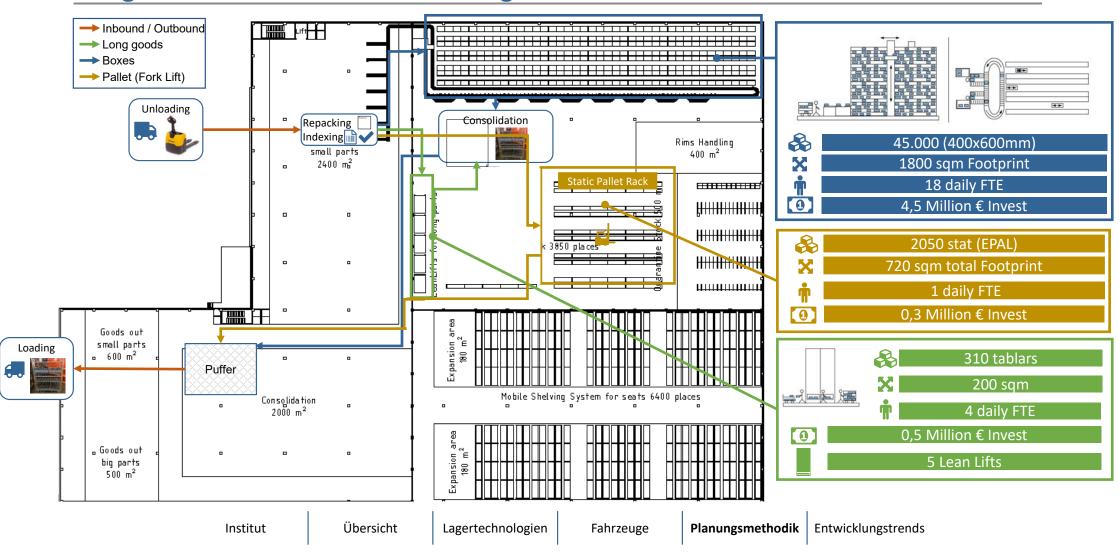
Beispiel: Die hier gezeigten Visionsfelder Ökonomische Vorteile und Nachhaltigkeit wurden im Planungskodex eines Projektes entwickelt.

Das neue Lager ist ein Logistikstandort, der ...

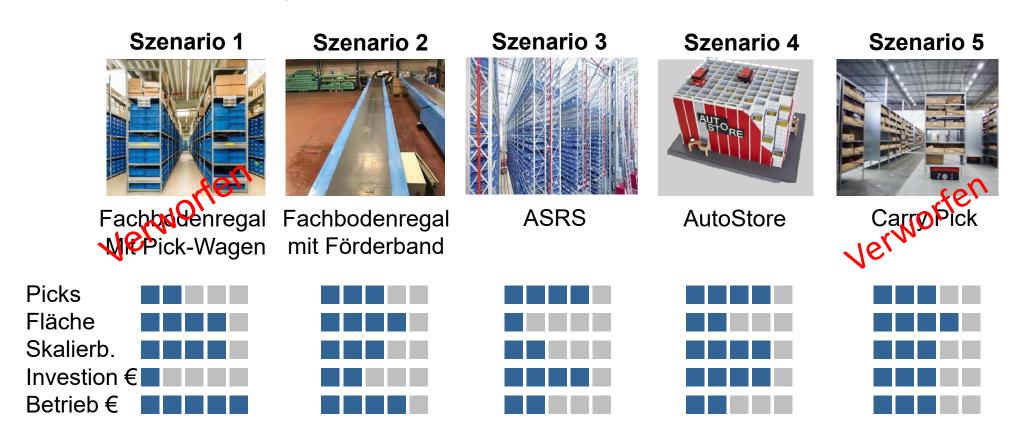
Ökonomische Vorteile

- ... Kosten durch die Verringerung von Transporten, benötigen Flächen und Personal sowie optimierte Prozesse spart.
- ... innovative technische Lösungen zu seinem Vorteil nutzt.
- ... Lean Logistik unterstützt, indem Verschwendung in Prozessen und von Material vermieden wird.

Nachhaltigkeit



- ... durch einen verantwortungsvollen Umgang mit Grundstücksflächen geprägt ist.
- ... die state-of-the-art Erwartungen an "grüne" Eigenschaften erfüllt.


Die Gestaltungsrichtlinien und diesen zugeordneten Maßnahmen werden objektorientiert definiert. In ihrer Gesamtheit adressieren sie die Summe der Visionsfelder.

Objekt	Richtlinie	Maßnahme
ktur	Eher hoch als flach	 Mindestens drei Stockwerke Effiziente Nutzung der Gebäudehöhe durch den Einsatz geeigneter Lagertechnik
Gebäudestruktur	Attraktives Erscheinungsbild	 Tageslicht auf den dynamischen Flächen Unterschiedliche Verkleidungen der Außenflächen
	Gebäudekonzept erlaubt Erweiterungen	 Reserveflächen im Gebäude werden vorgesehen Dach- und Wandöffnungen für die spätere Installation von Equipment
stik- logien	Innovative und flexible Logistiktechnologien	VerschieberegaleAutomatisierter Transport
Logistik- technologien	Trennung von Wertschöpfung und Transport	 Unterschiedliches Personal für Transport und Kommissionierung Einsatz ausgewählter Transporttechnologien

Definierte Szenarien stellen integrierte Prozessabläufe unter Nutzung ausgewählter funktionaler Technologien dar.

Eine erste Version eines morphologischen Kastens ermöglicht es, geeignete alternative Technologieelemente vorzuwählen.

Picks = Pick Rate; Fläche = Flächenanforderung; Skalierb. = Skalierbarkeit; Invest = Investitionskosten in €; Ops = Operative Kosten in €

21

Institut

Eine Nutzwertanalyse bewertet die ausgewählten Szenarien anhand von Entscheidungskriterien, die im Planungskodex definiert wurden und sich ggf. zusätzlich während des weiteren Projektverlaufs ergeben haben.

Qualitative Analyse	Szenario 1 - Fachbodenregal	Szenario 2 - Lagerlift	Szenario 3 - AKL mit Shuttle		
Bewertungskriterium	Gewichtung	Nutzen(0-5)	Nutzen (0-5)	Nutzen (0-5)	
Einfache Erhöhung der Stellplätze Realisierungszeit und -kosten für zusätzliche Stellplätze	8%				
Einfache Erhöhung der Kommissionierleistung (langfristig) Zusätzliches Personal, Erweiterung der Kommissioniertechnik	7%				
Flexibilität der Kommissionierleistung (kurzfristig) Zusätzlicher Personalbedarf (kein Technologie-Invest)	7%				
MDU Flexibilität Handling unterschiedlicher MDU, gemeinsames Lagern von MDU's aus der dynamischen Palette	12%				
Qualität von Prozessen & Materialflüssen # Konsolidierungsstufen / Teilehandling / Einfachheit	15%				
Sequenzierung für den Warenausgang Vorkommissionierung	15%				
Qualität der Kommissionierung Sicherstellen der Entnahme der richtigen SKU und Anzahl	7%				
Widerstandsfähig gegen Systemfehler Zugang zu Teilen, Möglichkeit den Betrieb aufrecht zu erhalten	12%				
	х%				
Nutzwert:	100%	3,07	2,70	4,07	

Institut	Übersicht	Lagertechnologien	Fahrzeuge	Planungsmethodik	Entwicklungstrends	22
----------	-----------	-------------------	-----------	------------------	--------------------	----

Um sowohl qualitative als auch quantitative Aspekte zu berücksichtigen, stellt das Portfolio-Diagramm den Nutzwert eines Szenarios den entsprechenden Kosten für 10 Jahre gegenüber.

Entwicklungstrends

Die für die Zukunft erwarteten Herausforderungen werden ein integriertes Vorgehen in der Prozess- und Logistikgestaltung erfordern.

Verknüpfung von Prozessen

Sicht der industriellen Anwender auf die Technische Logistik

Zukünftig:

Vernetzung als Wertschöpfungstreiber

TL: Technische Logistik

Fokus: Lagern, Orts-, Mengen- und Sortimentsänderung

Fokus: Beschleunigung und Leistungssteigerung durch Vernetzung – digital, mechatronisch

Fahrzeuge

Aktuelle Entwicklungspfade

Automatisierte Lagersysteme

Kommisionierunterstützung & -automatisierung

Autonome Fahrzeuge

Lokalisierung

Mehrstöckige Logistikimmobilien

"What you plan is what you get" Die Bedürfnisse von Mitarbeitern, Management und externen Nutzern stellen Anforderungen an die Gestaltung von Gebäuden und Technik.

Kantine

Büroumgebung

Ref: firstchoicebc.de

Ref: Novo Precison

State of the art

Ref: Jungheinrich AG

Wareneingang – Pakete

Ref; Courierpoint Ltd

Uncertainties

Ref: 1todrive Industrial project

Fitness - Erholung

Ref: Phoenix Contact GmbH

Wareneingang - LKW

26

Institut	Übersicht	Lagertechnologien	Fahrzeuge	Planungsmethodik	Entwicklungstrends
----------	-----------	-------------------	-----------	------------------	--------------------

Prof. Dr.-Ing. Jochen Kreutzfeldt

Technische Universität Hamburg-Harburg Institut für Technische Logistik Theodor-Yorck-Straße 8 21079 Hamburg

E-Mail: <u>Jochen.Kreutzfeldt@tuhh.de</u>

Telefon: +49 40 428 78-48 59