
System V Application Binary Interface
Intel386 Architecture Processor Supplement

Version 1.1

Edited by
H.J. Lu1, David L Kreitzer2, Milind Girkar3, Zia Ansari4

Based on

System V Application Binary Interface

AMD64 Architecture Processor Supplement

Edited by

H.J. Lu5, Michael Matz6, Milind Girkar7, Jan Hubička8, Andreas Jaeger9, Mark Mitchell10

December 7, 2015

1hongjiu.lu@intel.com
2david.l.kreitzer@intel.com
3milind.girkar@intel.com
4zia.ansari@intel.com
5hongjiu.lu@intel.com
6matz@suse.de
7milind.girkar@intel.com
8jh@suse.cz
9aj@suse.de

10mark@codesourcery.com

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Contents

1 About this Document 5
1.1 Scope . 5
1.2 Related Information . 6

2 Low Level System Information 7
2.1 Machine Interface . 7

2.1.1 Data Representation . 7
2.2 Function Calling Sequence . 9

2.2.1 Registers . 10
2.2.2 The Stack Frame . 10
2.2.3 Parameter Passing and Returning Values 11
2.2.4 Variable Argument Lists 16

2.3 Process Initialization . 17
2.3.1 Initial Stack and Register State 17
2.3.2 Thread State . 20
2.3.3 Auxiliary Vector . 20

2.4 DWARF Definition . 23
2.4.1 DWARF Release Number 24
2.4.2 DWARF Register Number Mapping 24

2.5 Stack Unwind Algorithm . 24

3 Object Files 28
3.1 Sections . 28

3.1.1 Special Sections . 28
3.1.2 EH_FRAME sections 28

3.2 Symbol Table . 33
3.3 Relocation . 34

3.3.1 Relocation Types . 34

1

Intel386 ABI 1.1 – December 7, 2015 – 8:57

4 Libraries 39
4.1 Unwind Library Interface . 39

4.1.1 Exception Handler Framework 40
4.1.2 Data Structures . 42
4.1.3 Throwing an Exception 45
4.1.4 Exception Object Management 48
4.1.5 Context Management . 48
4.1.6 Personality Routine . 50

5 Conventions 55
5.1 C++ . 56

6 Intel MPX Extension 57
6.1 Parameter Passing and Returning of Values 57

6.1.1 Bounds Passing . 57
6.1.2 Returning of Bounds . 58

A Linker Optimization 59
A.1 Combine GOTPLT and GOT Slots 59
A.2 Optimize R_386_GOT32X Relocation 60

2

Intel386 ABI 1.1 – December 7, 2015 – 8:57

List of Tables

2.1 Scalar Types . 8
2.2 Stack Frame with Base Pointer 11
2.3 Register Usage . 13
2.4 Return Value Locations for Fundamental Data Types 14
2.5 Parameter Passing Example . 15
2.6 Register Allocation for Parameter Passing Example 15
2.7 Stack Layout at the Call . 16
2.8 x87 Floating-Point Control Word 17
2.9 MXCSR Status Bits . 18
2.10 EFLAGS Bits . 18
2.11 Initial Process Stack . 19
2.12 auxv_t Type Definition . 20
2.13 Auxiliary Vector Types . 21
2.14 DWARF Register Number Mapping 25
2.15 Pointer Encoding Specification Byte 26

3.1 Special sections . 28
3.2 Common Information Entry (CIE) 30
3.3 CIE Augmentation Section Content 31
3.4 Frame Descriptor Entry (FDE) 32
3.5 FDE Augmentation Section Content 33
3.6 Relocation Types . 36

A.1 Call, Jmp and Mov Conversion 60
A.2 Test and Binop Conversion . 61

3

Intel386 ABI 1.1 – December 7, 2015 – 8:57

List of Figures

3.1 Relocatable Fields . 34

6.1 Bound Register Usage . 57

A.1 Procedure Linkage Table Entry Via GOTPLT Slot 59
A.2 Procedure Linkage Table Entry Via GOT Slot 60

Revision History
1.1 — 2015-12-07 Add AVX-512 support. Add linker optimization to combine

GOTPLT and GOT slots. Add R_386_GOT32X relocation and linker opti-
mization. Add FS/GS Base addresses to DWARF register number mapping.
Add Intel MPX support.

1.0 — 2015-02-03 Reformat table of Returning Values.

0.1 — 2015-01-19 Initial release.

4

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Chapter 1

About this Document

This document is a supplement to the existing Intel386 System V Application Bi-
nary Interface (ABI) document available at http://www.sco.com/developers/
devspecs/abi386-4.pdf, which describes the Linux IA-32 ABI for proces-
sors compatible with the Intel386 Architecture.

Intel processors released after the Pentium processors (Pentium 4, Intel Core,
and later), have introduced new architecture features, particularly new registers
and corresponding instructions to operate on the registers, like the MMX, Intel
SSE(1-4), and Intel AVX instruction set extensions. The C/C++ programming
languages have evolved to allow programmers to use new data types (for example,
__m64, __m128, and __m256). Many compilers (including the Intel compiler
and GCC) have supported these data types for some time. Other features in tools
(for example, the decimal floating point types, 64-bit integers, exception handling,
and so on) have also been developed since the original ABI was written.

This document describes the conventions and constraints on the implementa-
tion of these new features for interoperability between various tools.

1.1 Scope
This document describes the conventions on the new C/C++ language types (in-
cluding alignment and parameter passing conventions), the relocation symbols
in the object binary, and the exception handling mechanism for Intel386 architec-
ture. Some of this work has been discussed before http://groups.google.
com/group/ia32-abi or http://www.akkadia.org/drepper/tls.
pdf. The C++ object model that is expected to be followed is described in http:

5

Intel386 ABI 1.1 – December 7, 2015 – 8:57

http://www.sco.com/developers/devspecs/abi386-4.pdf
http://www.sco.com/developers/devspecs/abi386-4.pdf
http://groups.google.com/group/ia32-abi
http://groups.google.com/group/ia32-abi
http://www.akkadia.org/drepper/tls.pdf
http://www.akkadia.org/drepper/tls.pdf
http://mentorembedded.github.io/cxx-abi/
http://mentorembedded.github.io/cxx-abi/

//mentorembedded.github.io/cxx-abi/. In particular, this document
specifies the information that compilers have to generate and the library routines
that do the frame unwinding for exception handling.

1.2 Related Information
Links to useful documents:

• System V Application Binary Interface, Intel386TM Architecture Processor
Supplement Fourth Edition: http://www.sco.com/developers/
devspecs/abi386-4.pdf

• System V Application Binary Interface, AMD64 Architecture Processor
Supplement, Draft Version 0.99.6: http://www.x86-64.org/documentation/
abi.pdf

• Discussion of Intel processor extensions: http://groups.google.
com/group/ia32-abi

• ELF Handling of Thread-Local Storage: http://www.akkadia.org/
drepper/tls.pdf

• Thread-Local Storage Descriptors for IA32 and AMD64/EM64T: http:
//www.fsfla.org/~lxoliva/writeups/TLS/RFC-TLSDESC-x86.
txt

• Itanium C++ ABI, Revised March 20, 2001: http://mentorembedded.
github.io/cxx-abi/

6

Intel386 ABI 1.1 – December 7, 2015 – 8:57

http://mentorembedded.github.io/cxx-abi/
http://mentorembedded.github.io/cxx-abi/
http://www.sco.com/developers/devspecs/abi386-4.pdf
http://www.sco.com/developers/devspecs/abi386-4.pdf
http://www.x86-64.org/documentation/abi.pdf
http://www.x86-64.org/documentation/abi.pdf
http://groups.google.com/group/ia32-abi
http://groups.google.com/group/ia32-abi
http://www.akkadia.org/drepper/tls.pdf
http://www.akkadia.org/drepper/tls.pdf
http://www.fsfla.org/~lxoliva/writeups/TLS/RFC-TLSDESC-x86.txt
http://www.fsfla.org/~lxoliva/writeups/TLS/RFC-TLSDESC-x86.txt
http://www.fsfla.org/~lxoliva/writeups/TLS/RFC-TLSDESC-x86.txt
http://mentorembedded.github.io/cxx-abi/
http://mentorembedded.github.io/cxx-abi/

Chapter 2

Low Level System Information

This section describes the low-level system information for the Intel386 System
V ABI.

2.1 Machine Interface
The Intel386 processor architecture and data representation are covered in this
section.

2.1.1 Data Representation
Within this specification, the term byte refers to a 8-bit object, the term twobyte
refers to a 16-bit object, the term fourbyte refers to a 32-bit object, the term eight-
byte refers to a 64-bit object, and the term sixteenbyte refers to a 128-bit object.1

Fundamental Types

Table 2.1 shows the correspondence between ISO C scalar types and the proces-
sor scalar types. __float80, __float128, __m64, __m128, __m256 and
__m512 types are optional.

1The Intel386 ABI uses the term halfword for a 16-bit object, the term word for a 32-bit object,
the term doubleword for a 64-bit object. But most IA-32 processor specific documentation define
a word as a 16-bit object, a doubleword as a 32-bit object, a quadword as a 64-bit object and a
double quadword as a 128-bit object.

7

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Table 2.1: Scalar Types
Alignment Intel386

Type C sizeof (bytes) Architecture
_Bool† 1 1 boolean
char 1 1 signed byte
signed char
unsigned char 1 1 unsigned byte
short 2 2 signed twobyte
signed short
unsigned short 2 2 unsigned twobyte
int 4 4 signed fourbyte

Integral signed int
enum†††

unsigned int 4 4 unsigned fourbyte
long 4 4 signed fourbyte
signed long
unsigned long 4 4 unsigned fourbyte
long long 8 4 signed eightbyte
signed long long
unsigned long long 8 4 unsigned eightbyte

Pointer any-type * 4 4 unsigned fourbyte
any-type (*)()

Floating- float 4 4 single (IEEE-754)
point double 8 4 double (IEEE-754)

long double††††

__float80†† 12 4 80-bit extended (IEEE-754)
long double††††

__float128†† 16 16 128-bit extended (IEEE-754)
Complex _Complex float 8 4 complex single (IEEE-754)
Floating- _Complex double 16 4 complex double (IEEE-754)
point _Complex long double††††

_Complex __float80†† 24 4 complex 80-bit extended (IEEE-754)
_Complex long double††††

_Complex __float128†† 32 16 complex 128-bit extended (IEEE-754)
Decimal- _Decimal32 4 4 32bit BID (IEEE-754R)
floating- _Decimal64 8 8 64bit BID (IEEE-754R)
point _Decimal128 16 16 128bit BID (IEEE-754R)
Packed __m64†† 8 8 MMX and 3DNow!

__m128†† 16 16 SSE and SSE-2
__m256†† 32 32 AVX
__m512†† 64 64 AVX-512

† This type is called bool in C++.
†† These types are optional.
††† C++ and some implementations of C permit enums larger than an int. The underlying
type is bumped to an unsigned int.
†††† The long double type is 64-bit, the same as the double type, on the AndroidTM

platform. More information on the AndroidTM platform is available from http://www.
android.com/.

8

Intel386 ABI 1.1 – December 7, 2015 – 8:57

http://www.android.com/
http://www.android.com/

The 128-bit floating-point type uses a 15-bit exponent, a 113-bit mantissa (the
high order significant bit is implicit) and an exponent bias of 16383.2

The 80-bit floating-point type uses a 15 bit exponent, a 64-bit mantissa with
an explicit high order significant bit and an exponent bias of 16383.3

A null pointer (for all types) has the value zero.
The type size_t is defined as unsigned int.
Booleans, when stored in a memory object, are stored as single byte objects the

value of which is always 0 (false) or 1 (true). When stored in integer registers
(except for passing as arguments), all 4 bytes of the register are significant; any
nonzero value is considered true.

The Intel386 architecture in general does not require all data accesses to be
properly aligned. Misaligned data accesses may be slower than aligned accesses
but otherwise behave identically. The only exceptions are that __float128,
_Complex __float128, _Decimal128, __m128, __m256 and __m512
must always be aligned properly.

Structures and Unions

Structures and unions assume the alignment of their most strictly aligned compo-
nent. Each member is assigned to the lowest available offset with the appropriate
alignment. The size of any object is always a multiple of the object‘s alignment.

Structure and union objects can require padding to meet size and alignment
constraints. The contents of any padding is undefined.

2.2 Function Calling Sequence
This section describes the standard function calling sequence, including stack
frame layout, register usage, parameter passing and so on.

The standard calling sequence requirements apply only to global functions.
Local functions that are not reachable from other compilation units may use dif-
ferent conventions. Nevertheless, it is recommended that all functions use the
standard calling sequence when possible.

2Initial implementations of the Intel386 architecture are expected to support operations on the
128-bit floating-point type only via software emulation.

3This type is the x87 double extended precision data type.

9

Intel386 ABI 1.1 – December 7, 2015 – 8:57

2.2.1 Registers
The Intel386 architecture provides 8 general purpose 32-bit registers. In addition
the architecture provides 8 SSE registers, each 128 bits wide and 8 x87 floating
point registers, each 80 bits wide. Each of the x87 floating point registers may be
referred to in MMX mode as a 64-bit register. All of these registers are global to
all procedures active for a given thread.

Intel AVX (Advanced Vector Extensions) provides 8 256-bit wide AVX regis-
ters (%ymm0 - %ymm7). The lower 128-bits of %ymm0 - %ymm7 are aliased to the
respective 128b-bit SSE registers (%xmm0 - %xmm7). Intel AVX-512 provides 8
512-bit wide SIMD registers (%zmm0 - %zmm7). The lower 128-bits of %zmm0
- %zmm7 are aliased to the respective 128b-bit SSE registers (%xmm0 - %xmm7).
The lower 256-bits of %zmm0 - %zmm7 are aliased to the respective 256-bit AVX
registers (%ymm0 - %ymm7). For purposes of parameter passing and function re-
turn, %xmmN, %ymmN and %zmmN refer to the same register. Only one of them
can be used at the same time. We use vector register to refer to either SSE, AVX
or AVX-512 register. In addition, Intel AVX-512 also provides 8 vector mask
registers (%k0 - %k7), each 64-bit wide.

The CPU shall be in x87 mode upon entry to a function. Therefore, every
function that uses the MMX registers is required to issue an emms or femms
instruction after using MMX registers, before returning or calling another function.
4 The direction flag DF in the %EFLAGS register must be clear (set to “forward”
direction) on function entry and return. Other user flags have no specified role in
the standard calling sequence and are not preserved across calls.

The control bits of the MXCSR register are callee-saved (preserved across
calls), while the status bits are caller-saved (not preserved). The x87 status word
register is caller-saved, whereas the x87 control word is callee-saved.

2.2.2 The Stack Frame
In addition to registers, each function has a frame on the run-time stack. This stack
grows downwards from high addresses. Table 2.2 shows the stack organization.

The end of the input argument area shall be aligned on a 16 (32 or 64, if
__m256 or __m512 is passed on stack) byte boundary. In other words, the value
(%esp + 4) is always a multiple of 16 (32 or 64) when control is transferred to

4All x87 registers are caller-saved, so callees that make use of the MMX registers may use the
faster femms instruction.

10

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Table 2.2: Stack Frame with Base Pointer

Position Contents Frame
4n+8(%ebp) memory argument fourbyte n

. . . Previous
8(%ebp) memory argument fourbyte 0
4(%ebp) return address
0(%ebp) previous %ebp value
-4(%ebp) unspecified Current

. . .
0(%esp) variable size

the function entry point. The stack pointer, %esp, always points to the end of the
latest allocated stack frame. 5

2.2.3 Parameter Passing and Returning Values
After the argument values have been computed, they are placed either in registers
or pushed on the stack.

Passing Parameters

Most parameters are passed on the stack. Parameters are pushed onto the stack in
reverse order - the last argument in the parameter list has the highest address, that
is, it is stored farthest away from the stack pointer at the time of the call.

Padding may be needed to increase the size of each parameter to enforce align-
ment according to the values in Table 2.1. There is an exception for __m64 and
_Decimal64, which are treated as having an alignment of four for the purposes
of parameter passing. Additional padding may be necessary to ensure that the
bottom of the parameter block (closest to the stack pointer) is at an address which
is 0 mod 16, to guarantee proper alignment to the callee.

The exceptions to parameters passed on stack are as follows:

5The conventional use of %ebp as a frame pointer for the stack frame may be avoided by using
%esp (the stack pointer) to index into the stack frame. This technique saves two instructions in
the prologue and epilogue and makes one additional general-purpose register (%ebp) available.

11

Intel386 ABI 1.1 – December 7, 2015 – 8:57

• The first three parameters of type __m64 are passed in %mm0, %mm1, and
%mm2.

• The first three parameters of type __m128 are passed in %xmm0, %xmm1,
and %xmm2.6

If parameters of type __m256 are required to be passed on the stack, the stack
pointer must be aligned on a 0 mod 32 byte boundary at the time of the call.

If parameters of type __m512 are required to be passed on the stack, the stack
pointer must be aligned on a 0 mod 64 byte boundary at the time of the call.

Returning Values

Table 2.4 lists the location used to return a value for each fundamental data type.
Aggregate types (structs and unions) are always returned in memory.

Functions that return scalar floating-point values in registers return them on the
top of the x87 register stack, that is, %st0. It is the responsibility of the calling
function to pop this value from the stack regardless of whether or not the value
is actually used. Failure to do so results in undefined behavior. An implication
of this requirement is that functions returning scalar floating-point values must be
properly prototyped. Again, failure to do so results in undefined behavior.

Returning Values in Memory

Some fundamental types and all aggregate types are returned in memory. For
functions that return a value in memory, the caller passes a pointer to the memory
location where the called function must write the return value. This pointer is
passed to called function as an implicit first argument. The memory location must
be properly aligned according to the rules in section 2.1.1. In addition to writ-
ing the return value to the proper location, the called function is responsible for
popping the implicit pointer argument off the stack and storing it in %eax prior
to returning. The calling function may choose to reference the return value via
%eax after the function returns.

As an example of the register passing conventions, consider the declarations
and the function call shown in Table 2.5. The corresponding register allocation

6The SSE, AVX and AVX-512 registers share resources. Therefore, if the first __m128 pa-
rameter gets assigned to %xmm0 , the first __m256/__m512 parameter after that is assigned to
%ymm1/%zmm1 and not %ymm0/%zmm0.

12

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Table 2.3: Register Usage

Preserved across
Register Usage function calls

%eax scratch register; also used to return integer and
pointer values from functions; also stores the ad-
dress of a returned struct or union

No

%ebx callee-saved register; also used to hold the GOT
pointer when making function calls via the PLT

Yes

%ecx scratch register No
%edx scratch register; also used to return the upper

32bits of some 64bit return types
No

%esp stack pointer Yes
%ebp callee-saved register; optionally used as frame

pointer
Yes

%esi callee-saved register yes
%edi callee-saved register yes
%xmm0, %ymm0 scratch registers; also used to pass and return

__m128, __m256 parameters
No

%xmm1–%xmm2, scratch registers; also used to pass __m128, No
%ymm1–%ymm2 __m256 parameters
%xmm3–%xmm7, scratch registers No
%ymm3–%ymm7
%mm0 scratch register; also used to pass and return

__m64 parameter
No

%mm1–%mm2 used to pass __m64 parameters No
%mm3–%mm7 scratch registers No
%k0–%k7 scratch registers No
%st0 scratch register; also used to return float,

double, long double, __float80 param-
eters

No

%st1–%st7 scratch registers No
%gs Reserved for system (as thread specific data reg-

ister)
No

mxcsr SSE2 control and status word partial
x87 SW x87 status word No
x87 CW x87 control word Yes

13

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Table 2.4: Return Value Locations for Fundamental Data Types
Type C Return Value Location

_Bool %al
char The upper 24 bits of %eax are undefined. The caller must not
signed char rely on these being set in a predefined way by the called
unsigned char function.
short %ax
signed short The upper 16 bits of %eax are undefined. The caller must not
unsigned short rely on these being set in a predefined way by the called function.
int %eax

Integral signed int
enum
unsigned int
long
signed long
unsigned long
long long %edx:%eax
signed long long The most significant 32 bits are returned in %edx. The least
unsigned long long significant 32 bits are returned in %eax.

Pointer any-type * %eax
any-type (*)()
float %st0

Floating- double %st0
point long double %st0

__float80 %st0
__float128 memory
_Complex float %edx:%eax

The real part is returned in %eax. The imaginary part is returned
Complex in %edx.
floating- _Complex double memory
point _Complex long double memory

_Complex __float80 memory
_Complex __float128 memory
_Decimal32 %eax

Decimal- _Decimal64 %edx:%eax
floating- The most significant 32 bits are returned in %edx. The least
point significant 32 bits are returned in %eax.

_Decimal128 memory
__m64 %mm0

Packed __m128 %xmm0
__m256 %ymm0
__m512 %zmm0

14

Intel386 ABI 1.1 – December 7, 2015 – 8:57

is given in Table 2.6, the stack frame layout given in Table 2.7 shows the frame
before calling the function.

Table 2.5: Parameter Passing Example

typedef struct {
int a, b;
double d;

} structparm;
structparm s;
int i;
__m128 v, x, y;
__m256 w, z;

extern structparm func (int i, __m128 v,
structparm s, __m256 w,
__m128 x, __m128 y,
__m256 z);

func (i, v, s, w, x, y, z);

Table 2.6: Register Allocation for Parameter Passing Example

Parameter Location before the call
Return value pointer (%esp)

i 4(%esp)
v %xmm0
s 8(%esp)
w %ymm1
x %xmm2
y 32(%esp)
z 64(%esp)

15

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Table 2.7: Stack Layout at the Call

Contents Length
z 32 bytes

padding 16 bytes
y 16 bytes

padding 8 bytes
s 16 bytes
i 4 bytes

Return value pointer 4 bytes ←− %esp (32-byte aligned)

When a value of type _Bool is returned or passed in a register or on the stack,
bit 0 contains the truth value and bits 1 to 7 shall be zero7.

2.2.4 Variable Argument Lists
Some otherwise portable C programs depend on the argument passing scheme,
implicitly assuming that all arguments are passed on the stack, and arguments
appear in increasing order on the stack. Programs that make these assumptions
never have been portable, but they have worked on many implementations. How-
ever, they do not work on the Intel386 architecture because some arguments are
passed in registers. Portable C programs must use the header file <stdarg.h>
in order to handle variable argument lists.

When a function taking variable-arguments is called, all parameters are passed
on the stack, including __m64, __m128 and __m256. This rule applies to both
named and unnamed parameters. Because parameters are passed differently de-
pending on whether or not the called function takes a variable argument list, it is
necessary for such functions to be properly prototyped. Failure to do so results in
undefined behavior.

7Other bits are left unspecified, hence the consumer side of those values can rely on it being 0
or 1 when truncated to 8 bit.

16

Intel386 ABI 1.1 – December 7, 2015 – 8:57

2.3 Process Initialization

2.3.1 Initial Stack and Register State
Special Registers

The Intel386 architecture defines floating point instructions. At process startup
the two floating point units, SSE2 and x87, both have all floating-point exception
status flags cleared. The status of the control words is as defined in tables 2.8 and
2.9.

Table 2.8: x87 Floating-Point Control Word

Field Value Note
RC 0 Round to nearest
PC 11 Double extended precision
PM 1 Precision masked
UM 1 Underflow masked
OM 1 Overflow masked
ZM 1 Zero divide masked
DM 1 De-normal operand masked
IM 1 Invalid operation masked

17

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Table 2.9: MXCSR Status Bits

Field Value Note
FZ 0 Do not flush to zero
RC 0 Round to nearest
PM 1 Precision masked
UM 1 Underflow masked
OM 1 Overflow masked
ZM 1 Zero divide masked
DM 1 De-normal operand masked
IM 1 Invalid operation masked
DAZ 0 De-normals are not zero

The EFLAGS register contains the system flags, such as the direction flag and
the carry flag. The low 16 bits (FLAGS portion) of EFLAGS are accessible by
application software. The state of them at process initialization is shown in ta-
ble 2.10.

Table 2.10: EFLAGS Bits

Field Value Note
DF 0 Direction forward
CF 0 No carry
PF 0 Even parity
AF 0 No auxiliary carry
ZF 0 No zero result
SF 0 Unsigned result
OF 0 No overflow occurred

Stack State

This section describes the machine state that exec (BA_OS) creates for new
processes. Various language implementations transform this initial program state
to the state required by the language standard.

18

Intel386 ABI 1.1 – December 7, 2015 – 8:57

For example, a C program begins executing at a function named main de-
clared as:

extern int main (int argc , char *argv[] , char* envp[]);

where

argc is a non-negative argument count

argv is an array of argument strings, with argv[argc] == 0

envp is an array of environment strings, terminated by a null pointer.

When main() returns its value is passed to exit() and if that has been
over-ridden and returns, _exit() (which must be immune to user interposition).

The initial state of the process stack, i.e. when _start is called is shown in
table 2.11.

Table 2.11: Initial Process Stack

Purpose Start Address Length
Unspecified High Addresses
Information block, including argu-
ment strings, environment strings,
auxiliary information ...

varies

Unspecified
Null auxiliary vector entry 1 fourbyte
Auxiliary vector entries ... 2 fourbytes each
0 fourbyte
Environment pointers ... 1 fourbyte each
0 4+4*argc+%esp fourbyte
Argument pointers 4+%esp argc fourbytes
Argument count %esp fourbyte
Undefined Low Addresses

Argument strings, environment strings, and the auxiliary information appear
in no specific order within the information block and they need not be compactly
allocated.

Only the registers listed below have specified values at process entry:

19

Intel386 ABI 1.1 – December 7, 2015 – 8:57

%ebp The content of this register is unspecified at process initialization time,
but the user code should mark the deepest stack frame by setting the frame
pointer to zero.

%esp The stack pointer holds the address of the byte with lowest address which
is part of the stack. It is guaranteed to be 16-byte aligned at process entry.

%edx a function pointer that the application should register with atexit (BA_OS).

It is unspecified whether the data and stack segments are initially mapped with
execute permissions or not. Applications which need to execute code on the stack
or data segments should take proper precautions, e.g., by calling mprotect().

2.3.2 Thread State
New threads inherit the floating-point state of the parent thread and the state is
private to the thread thereafter.

2.3.3 Auxiliary Vector
The auxiliary vector is an array of the following structures (ref. table 2.12), inter-
preted according to the a_type member.

Table 2.12: auxv_t Type Definition

typedef struct
{

int a_type;
union {

long a_val;
void *a_ptr;
void (*a_fnc)();

} a_un;
} auxv_t;

The Intel386 ABI uses the auxiliary vector types defined in table 2.13.

20

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Table 2.13: Auxiliary Vector Types

Name Value a_un
AT_NULL 0 ignored
AT_IGNORE 1 ignored
AT_EXECFD 2 a_val
AT_PHDR 3 a_ptr
AT_PHENT 4 a_val
AT_PHNUM 5 a_val
AT_PAGESZ 6 a_val
AT_BASE 7 a_ptr
AT_FLAGS 8 a_val
AT_ENTRY 9 a_ptr
AT_NOTELF 10 a_val
AT_UID 11 a_val
AT_EUID 12 a_val
AT_GID 13 a_val
AT_EGID 14 a_val
AT_PLATFORM 15 a_ptr
AT_HWCAP 16 a_val
AT_CLKTCK 17 a_val
AT_SECURE 23 a_val
AT_BASE_PLATFORM 24 a_ptr
AT_RANDOM 25 a_ptr
AT_HWCAP2 26 a_val
AT_EXECFN 31 a_ptr

AT_NULL The auxiliary vector has no fixed length; instead its last entry’s a_type
member has this value.

AT_IGNORE This type indicates the entry has no meaning. The corresponding
value of a_un is undefined.

AT_EXECFD At process creation the system may pass control to an interpreter
program. When this happens, the system places either an entry of type
AT_EXECFD or one of type AT_PHDR in the auxiliary vector. The entry

21

Intel386 ABI 1.1 – December 7, 2015 – 8:57

for type AT_EXECFD uses the a_val member to contain a file descriptor
open to read the application program’s object file.

AT_PHDR The system may create the memory image of the application program
before passing control to the interpreter program. When this happens, the
a_ptr member of the AT_PHDR entry tells the interpreter where to find
the program header table in the memory image.

AT_PHENT The a_val member of this entry holds the size, in bytes, of one
entry in the program header table to which the AT_PHDR entry points.

AT_PHNUM The a_val member of this entry holds the number of entries in
the program header table to which the AT_PHDR entry points.

AT_PAGESZ If present, this entry’s a_val member gives the system page size,
in bytes.

AT_BASE The a_ptr member of this entry holds the base address at which the
interpreter program was loaded into memory. See “Program Header” in the
System V ABI for more information about the base address.

AT_FLAGS If present, the a_val member of this entry holds one-bit flags. Bits
with undefined semantics are set to zero.

AT_ENTRY The a_ptr member of this entry holds the entry point of the appli-
cation program to which the interpreter program should transfer control.

AT_NOTELF The a_val member of this entry is non-zero if the program is in
another format than ELF.

AT_UID The a_val member of this entry holds the real user id of the process.

AT_EUID The a_val member of this entry holds the effective user id of the
process.

AT_GID The a_val member of this entry holds the real group id of the process.

AT_EGID The a_val member of this entry holds the effective group id of the
process.

AT_PLATFORM The a_ptr member of this entry points to a string containing
the platform name.

22

Intel386 ABI 1.1 – December 7, 2015 – 8:57

AT_HWCAP The a_val member of this entry contains an bitmask of CPU
features. It mask to the value returned by CPUID 1.EDX.

AT_CLKTCK The a_valmember of this entry contains the frequency at which
times() increments.

AT_SECURE The a_val member of this entry contains one if the program is
in secure mode (for example started with suid). Otherwise zero.

AT_BASE_PLATFORM The a_ptr member of this entry points to a string
identifying the base architecture platform (which may be different from the
platform).

AT_RANDOM The a_ptrmember of this entry points to 16 securely generated
random bytes.

AT_HWCAP2 The a_valmember of this entry contains the extended hardware
feature mask. Currently it is 0, but may contain additional feature bits in the
future.

AT_EXECFN The a_ptr member of this entry is a pointer to the file name of
the executed program.

2.4 DWARF Definition
This section8 defines the Debug With Arbitrary Record Format (DWARF) debug-
ging format for the Intel386 processor family. The Intel386 ABI does not define a
debug format. However, all systems that do implement DWARF on Intel386 shall
use the following definitions.

DWARF is a specification developed for symbolic, source-level debugging.
The debugging information format does not favor the design of any compiler or
debugger. For more information on DWARF, see DWARF Debugging Format
Standard, available at: http://www.dwarfstd.org/.

8This section is structured in a way similar to the PowerPC psABI

23

Intel386 ABI 1.1 – December 7, 2015 – 8:57

http://www.dwarfstd.org/

2.4.1 DWARF Release Number
The DWARF definition requires some machine-specific definitions. The register
number mapping needs to be specified for the Intel386 registers. In addition, start-
ing with version 3 the DWARF specification requires processor-specific address
class codes to be defined.

2.4.2 DWARF Register Number Mapping
Table 2.149 outlines the register number mapping for the Intel386 processor fam-
ily.10

2.5 Stack Unwind Algorithm
The stack frames are not self descriptive and where stack unwinding is desirable
(such as for exception handling) additional unwind information needs to be gen-
erated. The information is stored in an allocatable section .eh_frame whose
format is identical to .debug_frame defined by the DWARF debug informa-
tion standard, see DWARF Debugging Information Format, with the following
extensions:

Position independence In order to avoid load time relocations for position inde-
pendent code, the FDE CIE offset pointer should be stored relative to the
start of CIE table entry. Frames using this extension of the DWARF stan-
dard must set the CIE identifier tag to 1.

Outgoing arguments area delta To maintain the size of the temporarily allo-
cated outgoing arguments area present on the end of the stack (when us-
ing push instructions), operation GNU_ARGS_SIZE (0x2e) can be used.
This operation takes a single uleb128 argument specifying the current
size. This information is used to adjust the stack frame when jumping into
the exception handler of the function after unwinding the stack frame. Ad-
ditionally the CIE Augmentation shall contain an exact specification of the
encoding used. It is recommended to use a PC relative encoding whenever
possible and adjust the size according to the code model used.

9The table defines Return Address to have a register number, even though the address is stored
in 0(%esp) and not in a physical register.

10This document does not define mappings for privileged registers.

24

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Table 2.14: DWARF Register Number Mapping

Register Name Number Abbreviation
General Purpose Register EAX 0 %eax
General Purpose Register ECX 1 %ecx
General Purpose Register EDX 2 %edx
General Purpose Register EBX 3 %ebx
Stack Pointer Register ESP 4 %esp
Frame Pointer Register EBP 5 %ebp
General Purpose Register ESI 6 %esi
General Purpose Register EDI 7 %edi
Return Address RA 8
Flag Register 9 %EFLAGS
Reserved 10
Floating Point Registers 0–7 11-18 %st0–%st7
Reserved 19-20
Vector Registers 0–7 21-28 %xmm0–%xmm7
MMX Registers 0–7 29-36 %mm0–%mm7
Media Control and Status 39 %mxcsr
Segment Register ES 40 %es
Segment Register CS 41 %cs
Segment Register SS 42 %ss
Segment Register DS 43 %ds
Segment Register FS 44 %fs
Segment Register GS 45 %gs
Reserved 46-47
Task Register 48 %tr
LDT Register 49 %ldtr
Reserved 50-92
FS Base address 93 %fs.base
GS Base address 94 %gs.base

25

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Table 2.15: Pointer Encoding Specification Byte

Mask Meaning
0x1 Values are stored as uleb128 or sleb128 type (according to flag 0x8)
0x2 Values are stored as 2 bytes wide integers (udata2 or sdata2)
0x3 Values are stored as 4 bytes wide integers (udata4 or sdata4)
0x4 Values are stored as 8 bytes wide integers (udata8 or sdata8)
0x8 Values are signed

0x10 Values are PC relative
0x20 Values are text section relative
0x30 Values are data section relative
0x40 Values are relative to the start of function

CIE Augmentations: The augmentation field is formated according to the aug-
mentation field formating string stored in the CIE header.

The string may contain the following characters:

z Indicates that a uleb128 is present determining the size of the augmen-
tation section.

L Indicates the encoding (and thus presence) of an LSDA pointer in the
FDE augmentation.
The data filed consist of single byte specifying the way pointers are
encoded. It is a mask of the values specified by the table 2.15.
The default DWARF pointer encoding (direct 4-byte absolute pointers)
is represented by value 0.

R Indicates a non-default pointer encoding for FDE code pointers. The
formating is represented by a single byte in the same way as in the ‘L’
command.

P Indicates the presence and an encoding of a language personality routine
in the CIE augmentation. The encoding is represented by a single byte
in the same way as in the ’L’ command followed by a pointer to the
personality function encoded by the specified encoding.

When the augmentation is present, the first command must always be ‘z’ to
allow easy skipping of the information.

26

Intel386 ABI 1.1 – December 7, 2015 – 8:57

In order to simplify manipulation of the unwind tables, the runtime library pro-
vide higher level API to stack unwinding mechanism, for details see section 4.1.

27

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Chapter 3

Object Files

3.1 Sections

3.1.1 Special Sections

Table 3.1: Special sections

Name Type Attributes
.eh_frame SHT_PROGBITS SHF_ALLOC

.eh_frame This section holds the unwind function table. The contents are de-
scribed in Section 3.1.2 of this document.

3.1.2 EH_FRAME sections
The call frame information needed for unwinding the stack is output into one sec-
tion named .eh_frame. An .eh_frame section consists of one or more sub-
sections. Each subsection contains a CIE (Common Information Entry) followed
by varying number of FDEs (Frame Descriptor Entry). A FDE corresponds to an
explicit or compiler generated function in a compilation unit, all FDEs can access
the CIE that begins their subsection for data. If the code for a function is not one
contiguous block, there will be a separate FDE for each contiguous sub-piece.

28

Intel386 ABI 1.1 – December 7, 2015 – 8:57

If an object file contains C++ template instantiations there shall be a separate
CIE immediately preceding each FDE corresponding to an instantiation.

Using the preferred encoding specified below, the .eh_frame section can be
entirely resolved at link time and thus can become part of the text segment.

EH_PE encoding below refers to the pointer encoding as specified in the en-
hanced LSB Chapter 7 for Eh_Frame_Hdr.

29

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Table 3.2: Common Information Entry (CIE)

Field Length (byte) Description
Length 4 Length of the CIE (not including this 4-

byte field)
CIE id 4 Value 0 for .eh_frame (used to distin-

guish CIEs and FDEs when scanning the
section)

Version 1 Value One (1)
CIE Augmenta-
tion String

string Null-terminated string with legal values
being "" or ’z’ optionally followed by sin-
gle occurrances of ’P’, ’L’, or ’R’ in any
order. The presence of character(s) in the
string dictates the content of field 8, the
Augmentation Section. Each character has
one or two associated operands in the AS
(see table 3.3 for which ones). Operand
order depends on position in the string (’z’
must be first).

Code Align Fac-
tor

uleb128 To be multiplied with the "Advance Lo-
cation" instructions in the Call Frame In-
structions

Data Align Fac-
tor

sleb128 To be multiplied with all offsets in the Call
Frame Instructions

Ret Address Reg 1/uleb128 A "virtual" register representation of the
return address. In Dwarf V2, this is a byte,
otherwise it is uleb128. It is a byte in gcc
3.3.x

Optional CIE
Augmentation
Section

varying Present if Augmentation String in Aug-
mentation Section field 4 is not 0. See ta-
ble 3.3 for the content.

Optional Call
Frame Instruc-
tions

varying

30

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Table 3.3: CIE Augmentation Section Content

Char Operands Length (byte) Description
z size uleb128 Length of the remainder of the Augmen-

tation Section
P personality_enc 1 Encoding specifier - preferred value is a

pc-relative, signed 4-byte
personality
routine

(encoded) Encoded pointer to personality routine
(actually to the PLT entry for the per-
sonality routine)

R code_enc 1 Non-default encoding for the
code-pointers (FDE members
initial_location and
address_range and the operand for
DW_CFA_set_loc) - preferred value
is pc-relative, signed 4-byte

L lsda_enc 1 FDE augmentation bodies may contain
LSDA pointers. If so they are encoded
as specified here - preferred value is pc-
relative, signed 4-byte possibly indirect
thru a GOT entry

31

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Table 3.4: Frame Descriptor Entry (FDE)

Field Length (byte) Description
Length 4 Length of the FDE (not including this 4-

byte field)
CIE pointer 4 Distance from this field to the nearest pre-

ceding CIE (the value is subtracted from
the current address). This value can never
be zero and thus can be used to distin-
guish CIE’s and FDE’s when scanning the
.eh_frame section

Initial Location var Reference to the function code correspond-
ing to this FDE. If ’R’ is missing from
the CIE Augmentation String, the field is
an 8-byte absolute pointer. Otherwise, the
corresponding EH_PE encoding in the CIE
Augmentation Section is used to interpret
the reference

Address Range var Size of the function code corresponding to
this FDE. If ’R’ is missing from the CIE
Augmentation String, the field is an 8-byte
unsigned number. Otherwise, the size is
determined by the corresponding EH_PE
encoding in the CIE Augmentation Section
(the value is always absolute)

Optional FDE
Augmentation
Section

var Present if CIE Augmentation String is non-
empty. See table 3.5 for the content.

Optional Call
Frame Instruc-
tions

var

32

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Table 3.5: FDE Augmentation Section Content

Char Operands Length (byte) Description
z length uleb128 Length of the remainder of the Augmen-

tation Section
L LSDA var LSDA pointer, encoded in the format

specified by the corresponding operand
in the CIE’s augmentation body. (only
present if length > 0).

The existence and size of the optional call frame instruction area must be com-
puted based on the overall size and the offset reached while scanning the preceding
fields of the CIE or FDE.

The overall size of a .eh_frame section is given in the ELF section header.
The only way to determine the number of entries is to scan the section until the
end, counting entries as they are encountered.

3.2 Symbol Table
The STT_GNU_IFUNC 1 symbol type is optional. It is the same as STT_FUNC
except that it always points to a function or piece of executable code which takes
no arguments and returns a function pointer. If an STT_GNU_IFUNC symbol
is referred to by a relocation, then evaluation of that relocation is delayed until
load-time. The value used in the relocation is the function pointer returned by an
invocation of the STT_GNU_IFUNC symbol.

The purpose of the STT_GNU_IFUNC symbol type is to allow the run-time to
select between multiple versions of the implementation of a specific function. The
selection made in general will take the currently available hardware into account
and select the most appropriate version.

1It is specified in ifunc.txt at http://sites.google.com/site/x32abi/
documents

33

Intel386 ABI 1.1 – December 7, 2015 – 8:57

http://sites.google.com/site/x32abi/documents
http://sites.google.com/site/x32abi/documents

3.3 Relocation

3.3.1 Relocation Types
Figure 3.3.1 shows the allowed relocatable fields.

Figure 3.1: Relocatable Fields

7 word8 0

15 word16 0

31 word32 0

word8 This specifies a 8-bit field occupying 1 byte.
word16 This specifies a 16-bit field occupying 2 bytes with arbitrary

byte alignment. These values use the same byte order as
other word values in the Intel386 architecture.

word32 This specifies a 32-bit field occupying 4 bytes with arbitrary
byte alignment. These values use the same byte order as
other word values in the Intel386 architecture.

The following notations are used for specifying relocations in table 3.6:

A Represents the addend used to compute the value of the relocatable field.

B Represents the base address at which a shared object has been loaded into mem-
ory during execution. Generally, a shared object is built with a 0 base virtual
address, but the execution address will be different.

34

Intel386 ABI 1.1 – December 7, 2015 – 8:57

G Represents the offset into the global offset table at which the relocation entry’s
symbol will reside during execution.

GOT Represents the address of the global offset table.

L Represents the place (section offset or address) of the Procedure Linkage Table
entry for a symbol.

P Represents the place (section offset or address) of the storage unit being relo-
cated (computed using r_offset).

S Represents the value of the symbol whose index resides in the relocation entry.

Z Represents the size of the symbol whose index resides in the relocation entry.

35

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Table 3.6: Relocation Types

Name Value Field Calculation
R_386_NONE 0 none none
R_386_32 1 word32 S + A
R_386_PC32 2 word32 S + A - P
R_386_GOT32 3 word32 G + A - GOT
R_386_PLT32 4 word32 L + A - P
R_386_COPY 5 none none
R_386_GLOB_DAT 6 word32 S
R_386_JUMP_SLOT 7 word32 S
R_386_RELATIVE 8 word32 B + A
R_386_GOTOFF 9 word32 S + A - GOT
R_386_GOTPC 10 word32 GOT + A - P
R_386_TLS_TPOFF 14 word32
R_386_TLS_IE 15 word32
R_386_TLS_GOTIE 16 word32
R_386_TLS_LE 17 word32
R_386_TLS_GD 18 word32
R_386_TLS_LDM 19 word32
R_386_16 20 word16 S + A
R_386_PC16 21 word16 S + A - P
R_386_8 22 word8 S + A
R_386_PC8 23 word8 S + A - P
R_386_TLS_GD_32 24 word32
R_386_TLS_GD_PUSH 25 word32
R_386_TLS_GD_CALL 26 word32
R_386_TLS_GD_POP 27 word32
R_386_TLS_LDM_32 28 word32
R_386_TLS_LDM_PUSH 29 word32
R_386_TLS_LDM_CALL 30 word32
R_386_TLS_LDM_POP 31 word32
R_386_TLS_LDO_32 32 word32
R_386_TLS_IE_32 33 word32
R_386_TLS_LE_32 34 word32
R_386_TLS_DTPMOD32 35 word32
R_386_TLS_DTPOFF32 36 word32
R_386_TLS_TPOFF32 37 word32
R_386_SIZE32 38 word32 Z + A
R_386_TLS_GOTDESC 39 word32
R_386_TLS_DESC_CALL 40 none none
R_386_TLS_DESC 41 word32
R_386_IRELATIVE 42 word32 indirect (B + A)
R_386_GOT32X 43 word32 G + A - GOT / G + A†

† Used without base register when position-independent code is disabled.

The R_386_GOT32X relocation can be used to compute the address of the
symbol’s global offset table entry without base register when position-independent
code is disabled. For name@GOT in:

36

Intel386 ABI 1.1 – December 7, 2015 – 8:57

call *name@GOT(%reg)
jmp *name@GOT(%reg)
mov name@GOT(%reg1), %reg2
test %reg1, name@GOT(%reg2)
binop name@GOT(%reg1), %reg2

as well as

call *name@GOT
jmp *name@GOT
mov name@GOT, %reg
test %reg, name@GOT
binop name@GOT, %reg

where binop is one of adc, add, and, cmp, or, sbb, sub, xor instructions2,
the R_386_GOT32X relocation should be generated, instead of the R_386_GOT32
relocation.

A program or object file using R_386_8, R_386_16, R_386_PC16 or
R_386_PC8 relocations is not conformant to this ABI, these relocations are only
added for documentation purposes. The R_386_16, and R_386_8 relocations
truncate the computed value to 16-bits and 8-bits respectively.

The relocations R_386_TLS_TPOFF, R_386_TLS_IE,
R_386_TLS_GOTIE, R_386_TLS_LE, R_386_TLS_GD,
R_386_TLS_LDM, R_386_TLS_GD_32, R_386_TLS_GD_PUSH,
R_386_TLS_GD_CALL, R_386_TLS_GD_POP, R_386_TLS_LDM_32,
R_386_TLS_LDM_PUSH, R_386_TLS_LDM_CALL,
R_386_TLS_LDM_POP, R_386_TLS_LDO_32, R_386_TLS_IE_32,
R_386_TLS_LE_32, R_386_TLS_DTPMOD32, R_386_TLS_DTPOFF32
and R_386_TLS_TPOFF32 are listed for completeness. They are part of
the Thread-Local Storage ABI extensions and are documented in the doc-
ument called “ELF Handling for Thread-Local Storage”3. The relocations
R_386_TLS_GOTDESC, R_386_TLS_DESC_CALL and R_386_TLS_DESC
are also used for Thread-Local Storage, but are not documented there as of this
writing. A description can be found in the document “Thread-Local Storage
Descriptors for IA32 and AMD64/EM64T”4.

2mov name@GOT, %eax must be encoded with opcode 0x8b, not 0xa0, to allow linker
optimization.

3This document is currently available via http://www.akkadia.org/drepper/tls.
pdf

4This document is currently available via http://www.fsfla.org/~lxoliva/
writeups/TLS/RFC-TLSDESC-x86.txt

37

Intel386 ABI 1.1 – December 7, 2015 – 8:57

http://www.akkadia.org/drepper/tls.pdf
http://www.akkadia.org/drepper/tls.pdf
http://www.fsfla.org/~lxoliva/writeups/TLS/RFC-TLSDESC-x86.txt
http://www.fsfla.org/~lxoliva/writeups/TLS/RFC-TLSDESC-x86.txt

R_386_IRELATIVE is similar to R_386_RELATIVE except that the value
used in this relocation is the program address returned by the function, which takes
no arguments, at the address of the result of the corresponding R_386_RELATIVE
relocation.

One use of the R_386_IRELATIVE relocation is to avoid name lookup for
the locally defined STT_GNU_IFUNC symbols at load-time. Support for this
relocation is optional, but is required for the STT_GNU_IFUNC symbols.

38

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Chapter 4

Libraries

4.1 Unwind Library Interface
This section defines the Unwind Library interface1, expected to be provided by
any Intel386 psABI-compliant system. This is the interface on which the C++
ABI exception-handling facilities are built. We assume as a basis the Call Frame
Information tables described in the DWARF Debugging Information Format doc-
ument.

This section is meant to specify a language-independent interface that can be
used to provide higher level exception-handling facilities such as those defined by
C++.

The unwind library interface consists of at least the following routines:
_Unwind_RaiseException ,
_Unwind_Resume ,
_Unwind_DeleteException ,
_Unwind_GetGR ,
_Unwind_SetGR ,
_Unwind_GetIP ,
_Unwind_SetIP ,
_Unwind_GetRegionStart ,
_Unwind_GetLanguageSpecificData ,
_Unwind_ForcedUnwind ,
_Unwind_GetCFA

1The overall structure and the external interface is derived from the IA-64 UNIX System V
ABI

39

Intel386 ABI 1.1 – December 7, 2015 – 8:57

In addition, two data types are defined (_Unwind_Context and
_Unwind_Exception) to interface a calling runtime (such as the C++ run-
time) and the above routine. All routines and interfaces behave as if defined
extern "C". In particular, the names are not mangled. All names defined
as part of this interface have a "_Unwind_" prefix.

Lastly, a language and vendor specific personality routine will be stored by
the compiler in the unwind descriptor for the stack frames requiring exception
processing. The personality routine is called by the unwinder to handle language-
specific tasks such as identifying the frame handling a particular exception.

4.1.1 Exception Handler Framework
Reasons for Unwinding

There are two major reasons for unwinding the stack:

• exceptions, as defined by languages that support them (such as C++)

• “forced” unwinding (such as caused by longjmp or thread termination)

The interface described here tries to keep both similar. There is a major dif-
ference, however.

• In the case where an exception is thrown, the stack is unwound while the
exception propagates, but it is expected that the personality routine for each
stack frame knows whether it wants to catch the exception or pass it through.
This choice is thus delegated to the personality routine, which is expected to
act properly for any type of exception, whether “native” or “foreign”. Some
guidelines for “acting properly” are given below.

• During “forced unwinding”, on the other hand, an external agent is driving
the unwinding. For instance, this can be the longjmp routine. This exter-
nal agent, not each personality routine, knows when to stop unwinding. The
fact that a personality routine is not given a choice about whether unwinding
will proceed is indicated by the _UA_FORCE_UNWIND flag.

To accommodate these differences, two different routines are proposed.
_Unwind_RaiseException performs exception-style unwinding, under
control of the personality routines. _Unwind_ForcedUnwind , on the other
hand, performs unwinding, but gives an external agent the opportunity to intercept

40

Intel386 ABI 1.1 – December 7, 2015 – 8:57

calls to the personality routine. This is done using a proxy personality routine, that
intercepts calls to the personality routine, letting the external agent override the
defaults of the stack frame’s personality routine.

As a consequence, it is not necessary for each personality routine to know
about any of the possible external agents that may cause an unwind. For instance,
the C++ personality routine need deal only with C++ exceptions (and possibly
disguising foreign exceptions), but it does not need to know anything specific
about unwinding done on behalf of longjmp or pthreads cancellation.

The Unwind Process

The standard ABI exception handling/unwind process begins with the raising of an
exception, in one of the forms mentioned above. This call specifies an exception
object and an exception class.

The runtime framework then starts a two-phase process:

• In the search phase, the framework repeatedly calls the personality routine,
with the _UA_SEARCH_PHASE flag as described below, first for the cur-
rent %eip and register state, and then unwinding a frame to a new %eip
at each step, until the personality routine reports either success (a handler
found in the queried frame) or failure (no handler) in all frames. It does not
actually restore the unwound state, and the personality routine must access
the state through the API.

• If the search phase reports a failure, e.g. because no handler was found, it
will call terminate() rather than commence phase 2.

If the search phase reports success, the framework restarts in the cleanup
phase. Again, it repeatedly calls the personality routine, with the
_UA_CLEANUP_PHASE flag as described below, first for the current
%eip and register state, and then unwinding a frame to a new %eip at
each step, until it gets to the frame with an identified handler. At that point,
it restores the register state, and control is transferred to the user landing
pad code.

Each of these two phases uses both the unwind library and the personality
routines, since the validity of a given handler and the mechanism for transferring
control to it are language-dependent, but the method of locating and restoring
previous stack frames is language-independent.

41

Intel386 ABI 1.1 – December 7, 2015 – 8:57

A two-phase exception-handling model is not strictly necessary to implement
C++ language semantics, but it does provide some benefits. For example, the first
phase allows an exception-handling mechanism to dismiss an exception before
stack unwinding begins, which allows presumptive exception handling (correcting
the exceptional condition and resuming execution at the point where it was raised).
While C++ does not support presumptive exception handling, other languages do,
and the two-phase model allows C++ to coexist with those languages on the stack.

Note that even with a two-phase model, we may execute each of the two phases
more than once for a single exception, as if the exception was being thrown more
than once. For instance, since it is not possible to determine if a given catch clause
will re-throw or not without executing it, the exception propagation effectively
stops at each catch clause, and if it needs to restart, restarts at phase 1. This
process is not needed for destructors (cleanup code), so the phase 1 can safely
process all destructor-only frames at once and stop at the next enclosing catch
clause.

For example, if the first two frames unwound contain only cleanup code, and
the third frame contains a C++ catch clause, the personality routine in phase 1,
does not indicate that it found a handler for the first two frames. It must do so for
the third frame, because it is unknown how the exception will propagate out of
this third frame, e.g. by re-throwing the exception or throwing a new one in C++.

The API specified by the Intel386 psABI for implementing this framework is
described in the following sections.

4.1.2 Data Structures
Reason Codes

The unwind interface uses reason codes in several contexts to identify the reasons
for failures or other actions, defined as follows:

42

Intel386 ABI 1.1 – December 7, 2015 – 8:57

typedef enum {
_URC_NO_REASON = 0,
_URC_FOREIGN_EXCEPTION_CAUGHT = 1,
_URC_FATAL_PHASE2_ERROR = 2,
_URC_FATAL_PHASE1_ERROR = 3,
_URC_NORMAL_STOP = 4,
_URC_END_OF_STACK = 5,
_URC_HANDLER_FOUND = 6,
_URC_INSTALL_CONTEXT = 7,
_URC_CONTINUE_UNWIND = 8

} _Unwind_Reason_Code;
The interpretations of these codes are described below.

Exception Header

The unwind interface uses a pointer to an exception header object as its repre-
sentation of an exception being thrown. In general, the full representation of an
exception object is language- and implementation-specific, but is prefixed by a
header understood by the unwind interface, defined as follows:

typedef void (*_Unwind_Exception_Cleanup_Fn)
(_Unwind_Reason_Code reason,
struct _Unwind_Exception *exc);

struct _Unwind_Exception {
uint64 exception_class;
_Unwind_Exception_Cleanup_Fn exception_cleanup;
uint32 private_1;
uint32 private_2;

};

An _Unwind_Exception object must be eightbyte aligned. The first two
fields are set by user code prior to raising the exception, and the latter two should
never be touched except by the runtime.

The exception_class field is a language- and implementation-specific
identifier of the kind of exception. It allows a personality routine to distinguish
between native and foreign exceptions, for example. By convention, the high 4
bytes indicate the vendor (for instance GNUC), and the low 4 bytes indicate the
language. For the C++ ABI described in this document, the low four bytes are
C++\0.

43

Intel386 ABI 1.1 – December 7, 2015 – 8:57

The exception_cleanup routine is called whenever an exception object
needs to be destroyed by a different runtime than the runtime which created the
exception object, for instance if a Java exception is caught by a C++ catch handler.
In such a case, a reason code (see above) indicates why the exception object needs
to be deleted:

_URC_FOREIGN_EXCEPTION_CAUGHT = 1 This indicates that a different
runtime caught this exception. Nested foreign exceptions, or re-throwing a
foreign exception, result in undefined behavior.

_URC_FATAL_PHASE1_ERROR = 3 The personality routine encountered an
error during phase 1, other than the specific error codes defined.

_URC_FATAL_PHASE2_ERROR = 2 The personality routine encountered an
error during phase 2, for instance a stack corruption.

Normally, all errors should be reported during phase 1 by returning from
_Unwind_RaiseException. However, landing pad code could cause stack
corruption between phase 1 and phase 2. For a C++ exception, the runtime should
call terminate() in that case.

The private unwinder state (private_1 and private_2) in an exception
object should be neither read by nor written to by personality routines or other
parts of the language-specific runtime. It is used by the specific implementation
of the unwinder on the host to store internal information, for instance to remember
the final handler frame between unwinding phases.

In addition to the above information, a typical runtime such as the C++ run-
time will add language-specific information used to process the exception. This
is expected to be a contiguous area of memory after the _Unwind_Exception
object, but this is not required as long as the matching personality routines know
how to deal with it, and the exception_cleanup routine de-allocates it prop-
erly.

Unwind Context

The _Unwind_Context type is an opaque type used to refer to a system-
specific data structure used by the system unwinder. This context is created and
destroyed by the system, and passed to the personality routine during unwinding.

struct _Unwind_Context

44

Intel386 ABI 1.1 – December 7, 2015 – 8:57

4.1.3 Throwing an Exception
_Unwind_RaiseException

_Unwind_Reason_Code _Unwind_RaiseException
(struct _Unwind_Exception *exception_object);

Raise an exception, passing along the given exception object, which should
have its exception_class and exception_cleanup fields set. The ex-
ception object has been allocated by the language-specific runtime, and has a
language-specific format, except that it must contain an _Unwind_Exception
struct (see Exception Header above). _Unwind_RaiseException does not
return, unless an error condition is found (such as no handler for the exception,
bad stack format, etc.). In such a case, an _Unwind_Reason_Code value is
returned.

Possibilities are:

_URC_END_OF_STACK The unwinder encountered the end of the stack dur-
ing phase 1, without finding a handler. The unwind runtime will
not have modified the stack. The C++ runtime will normally call
uncaught_exception() in this case.

_URC_FATAL_PHASE1_ERROR The unwinder encountered an unexpected er-
ror during phase 1, e.g. stack corruption. The unwind runtime will not have
modified the stack. The C++ runtime will normally call terminate() in
this case.

If the unwinder encounters an unexpected error during phase 2, it should re-
turn _URC_FATAL_PHASE2_ERROR to its caller. In C++, this will usually be
__cxa_throw, which will call terminate().

The unwind runtime will likely have modified the stack (e.g. popped frames
from it) or register context, or landing pad code may have corrupted them. As a
result, the the caller of _Unwind_RaiseException can make no assumptions
about the state of its stack or registers.

45

Intel386 ABI 1.1 – December 7, 2015 – 8:57

_Unwind_ForcedUnwind

typedef _Unwind_Reason_Code (*_Unwind_Stop_Fn)
(int version,
_Unwind_Action actions,
uint64 exceptionClass,
struct _Unwind_Exception *exceptionObject,
struct _Unwind_Context *context,
void *stop_parameter);
_Unwind_Reason_Code_Unwind_ForcedUnwind
(struct _Unwind_Exception *exception_object,
_Unwind_Stop_Fn stop,
void *stop_parameter);

Raise an exception for forced unwinding, passing along the given
exception object, which should have its exception_class and
exception_cleanup fields set. The exception object has been allo-
cated by the language-specific runtime, and has a language-specific format,
except that it must contain an _Unwind_Exception struct (see Exception
Header above).

Forced unwinding is a single-phase process (phase 2 of the normal exception-
handling process). The stop and stop_parameter parameters control the
termination of the unwind process, instead of the usual personality routine query.
The stop function parameter is called for each unwind frame, with the pa-
rameters described for the usual personality routine below, plus an additional
stop_parameter.

When the stop function identifies the destination frame, it transfers control
(according to its own, unspecified, conventions) to the user code as appropriate
without returning, normally after calling _Unwind_DeleteException. If
not, it should return an _Unwind_Reason_Code value as follows:

_URC_NO_REASON This is not the destination frame. The unwind runtime will
call the frame’s personality routine with the _UA_FORCE_UNWIND and
_UA_CLEANUP_PHASE flags set in actions, and then unwind to the next
frame and call the stop function again.

_URC_END_OF_STACK In order to allow _Unwind_ForcedUnwind to per-
form special processing when it reaches the end of the stack, the unwind
runtime will call it after the last frame is rejected, with a NULL stack pointer

46

Intel386 ABI 1.1 – December 7, 2015 – 8:57

in the context, and the stop function must catch this condition (i.e. by notic-
ing the NULL stack pointer). It may return this reason code if it cannot
handle end-of-stack.

_URC_FATAL_PHASE2_ERROR The stop function may return this code for
other fatal conditions, e.g. stack corruption.

If the stop function returns any reason code other than _URC_NO_REASON,
the stack state is indeterminate from the point of view of the caller of
_Unwind_ForcedUnwind. Rather than attempt to return, therefore, the un-
wind library should return _URC_FATAL_PHASE2_ERROR to its caller.

Example: longjmp_unwind()
The expected implementation of longjmp_unwind() is as follows. The

setjmp() routine will have saved the state to be restored in its custom-
ary place, including the frame pointer. The longjmp_unwind() routine
will call _Unwind_ForcedUnwind with a stop function that compares the
frame pointer in the context record with the saved frame pointer. If equal,
it will restore the setjmp() state as customary, and otherwise it will return
_URC_NO_REASON or _URC_END_OF_STACK.

If a future requirement for two-phase forced unwinding were identified, an al-
ternate routine could be defined to request it, and an actions parameter flag defined
to support it.

_Unwind_Resume

void _Unwind_Resume
(struct _Unwind_Exception *exception_object);

Resume propagation of an existing exception e.g. after executing cleanup code
in a partially unwound stack. A call to this routine is inserted at the end of a
landing pad that performed cleanup, but did not resume normal execution. It
causes unwinding to proceed further.

_Unwind_Resume should not be used to implement re-throwing. To the
unwinding runtime, the catch code that re-throws was a handler, and the previous
unwinding session was terminated before entering it. Re-throwing is implemented
by calling _Unwind_RaiseException again with the same exception object.

This is the only routine in the unwind library which is expected to be called
directly by generated code: it will be called at the end of a landing pad in a
"landing-pad" model.

47

Intel386 ABI 1.1 – December 7, 2015 – 8:57

4.1.4 Exception Object Management
_Unwind_DeleteException

void _Unwind_DeleteException
(struct _Unwind_Exception *exception_object);

Deletes the given exception object. If a given runtime resumes nor-
mal execution after catching a foreign exception, it will not know how
to delete that exception. Such an exception will be deleted by calling
_Unwind_DeleteException. This is a convenience function that calls the
function pointed to by the exception_cleanup field of the exception header.

4.1.5 Context Management
These functions are used for communicating information about the unwind con-
text (i.e. the unwind descriptors and the user register state) between the unwind
library and the personality routine and landing pad. They include routines to read
or set the context record images of registers in the stack frame corresponding to a
given unwind context, and to identify the location of the current unwind descrip-
tors and unwind frame.

_Unwind_GetGR

uint32 _Unwind_GetGR
(struct _Unwind_Context *context, int index);

This function returns the 32-bit value of the given general register. The register
is identified by its index as given in table 2.14.

During the two phases of unwinding, no registers have a guaranteed value.

_Unwind_SetGR

void _Unwind_SetGR
(struct _Unwind_Context *context,
int index,
uint32 new_value);

This function sets the 32-bit value of the given register, identified by its index
as for _Unwind_GetGR.

The behavior is guaranteed only if the function is called during phase 2 of
unwinding, and applied to an unwind context representing a handler frame, for

48

Intel386 ABI 1.1 – December 7, 2015 – 8:57

which the personality routine will return _URC_INSTALL_CONTEXT. In that
case, only registers %eax and %edx should be used. These scratch registers are
reserved for passing arguments between the personality routine and the landing
pads.

_Unwind_GetIP

uint32 _Unwind_GetIP
(struct _Unwind_Context *context);

This function returns the 32-bit value of the instruction pointer (IP).
During unwinding, the value is guaranteed to be the address of the instruction

immediately following the call site in the function identified by the unwind con-
text. This value may be outside of the procedure fragment for a function call that
is known to not return (such as _Unwind_Resume).

_Unwind_SetIP

void _Unwind_SetIP
(struct _Unwind_Context *context,
uint32 new_value);

This function sets the value of the instruction pointer (IP) for the routine iden-
tified by the unwind context.

The behavior is guaranteed only when this function is called for an unwind
context representing a handler frame, for which the personality routine will return
_URC_INSTALL_CONTEXT. In this case, control will be transferred to the given
address, which should be the address of a landing pad.

_Unwind_GetLanguageSpecificData

uint32 _Unwind_GetLanguageSpecificData
(struct _Unwind_Context *context);
This routine returns the address of the language-specific data area for the cur-

rent stack frame.
This routine is not strictly required: it could be accessed through

_Unwind_GetIP using the documented format of the DWARF Call Frame In-
formation Tables, but since this work has been done for finding the personality
routine in the first place, it makes sense to cache the result in the context. We
could also pass it as an argument to the personality routine.

49

Intel386 ABI 1.1 – December 7, 2015 – 8:57

_Unwind_GetRegionStart

uint32 _Unwind_GetRegionStart
(struct _Unwind_Context *context);

This routine returns the address of the beginning of the procedure or code
fragment described by the current unwind descriptor block.

This information is required to access any data stored relative to the beginning
of the procedure fragment. For instance, a call site table might be stored relative
to the beginning of the procedure fragment that contains the calls. During un-
winding, the function returns the start of the procedure fragment containing the
call site in the current stack frame.

_Unwind_GetCFA

uint32 _Unwind_GetCFA
(struct _Unwind_Context *context);

This function returns the 32-bit Canonical Frame Address which is defined as
the value of %esp at the call site in the previous frame. This value is guaranteed
to be correct any time the context has been passed to a personality routine or a
stop function.

4.1.6 Personality Routine
_Unwind_Reason_Code (*__personality_routine)

(int version,
_Unwind_Action actions,
uint64 exceptionClass,
struct _Unwind_Exception *exceptionObject,
struct _Unwind_Context *context);

The personality routine is the function in the C++ (or other language) run-
time library which serves as an interface between the system unwind library and
language-specific exception handling semantics. It is specific to the code fragment
described by an unwind info block, and it is always referenced via the pointer in
the unwind info block, and hence it has no psABI-specified name.

Parameters

The personality routine parameters are as follows:

50

Intel386 ABI 1.1 – December 7, 2015 – 8:57

version Version number of the unwinding runtime, used to detect a mis-match
between the unwinder conventions and the personality routine, or to provide
backward compatibility. For the conventions described in this document,
version will be 1.

actions Indicates what processing the personality routine is expected to per-
form, as a bit mask. The possible actions are described below.

exceptionClass An 8-byte identifier specifying the type of the thrown ex-
ception. By convention, the high 4 bytes indicate the vendor (for instance
GNUC), and the low 4 bytes indicate the language. For the C++ ABI de-
scribed in this document, the low four bytes are C++\0. This is not a null-
terminated string. Some implementations may use no null bytes.

exceptionObject The pointer to a memory location recording the necessary
information for processing the exception according to the semantics of a
given language (see the Exception Header section above).

context Unwinder state information for use by the personality routine. This is
an opaque handle used by the personality routine in particular to access the
frame’s registers (see the Unwind Context section above).

return value The return value from the personality routine indicates how further
unwind should happen, as well as possible error conditions. See the follow-
ing section.

Personality Routine Actions

The actions argument to the personality routine is a bitwise OR of one or more of
the following constants:
typedef int _Unwind_Action;
const _Unwind_Action _UA_SEARCH_PHASE = 1;
const _Unwind_Action _UA_CLEANUP_PHASE = 2;
const _Unwind_Action _UA_HANDLER_FRAME = 4;
const _Unwind_Action _UA_FORCE_UNWIND = 8;

_UA_SEARCH_PHASE Indicates that the personality routine should check if the
current frame contains a handler, and if so return _URC_HANDLER_FOUND,

51

Intel386 ABI 1.1 – December 7, 2015 – 8:57

or otherwise return _URC_CONTINUE_UNWIND. _UA_SEARCH_PHASE
cannot be set at the same time as _UA_CLEANUP_PHASE.

_UA_CLEANUP_PHASE Indicates that the personality routine should per-
form cleanup for the current frame. The personality routine can
perform this cleanup itself, by calling nested procedures, and return
_URC_CONTINUE_UNWIND. Alternatively, it can setup the registers (in-
cluding the IP) for transferring control to a "landing pad", and return
_URC_INSTALL_CONTEXT.

_UA_HANDLER_FRAME During phase 2, indicates to the personality routine
that the current frame is the one which was flagged as the handler frame
during phase 1. The personality routine is not allowed to change its mind
between phase 1 and phase 2, i.e. it must handle the exception in this frame
in phase 2.

_UA_FORCE_UNWIND During phase 2, indicates that no language is allowed
to "catch" the exception. This flag is set while unwinding the stack for
longjmp or during thread cancellation. User-defined code in a catch clause
may still be executed, but the catch clause must resume unwinding with a
call to _Unwind_Resume when finished.

Transferring Control to a Landing Pad

If the personality routine determines that it should transfer control to a landing
pad (in phase 2), it may set up registers (including IP) with suitable values for
entering the landing pad (e.g. with landing pad parameters), by calling the context
management routines above. It then returns _URC_INSTALL_CONTEXT.

Prior to executing code in the landing pad, the unwind library restores registers
not altered by the personality routine, using the context record, to their state in that
frame before the call that threw the exception, as follows. All registers specified
as callee-saved by the base ABI are restored, as well as scratch registers %eax and
%edx (see below). Except for those exceptions, scratch (or caller-saved) registers
are not preserved, and their contents are undefined on transfer.

The landing pad can either resume normal execution (as, for instance, at the
end of a C++ catch), or resume unwinding by calling _Unwind_Resume and
passing it the exceptionObject argument received by the personality routine.
_Unwind_Resume will never return.

52

Intel386 ABI 1.1 – December 7, 2015 – 8:57

_Unwind_Resume should be called if and only if the personality routine
did not return _Unwind_HANDLER_FOUND during phase 1. As a result, the
unwinder can allocate resources (for instance memory) and keep track of them in
the exception object reserved words. It should then free these resources before
transferring control to the last (handler) landing pad. It does not need to free the
resources before entering non-handler landing-pads, since _Unwind_Resume
will ultimately be called.

The landing pad may receive arguments from the runtime, typically passed
in registers set using _Unwind_SetGR by the personality routine. For
a landing pad that can call to _Unwind_Resume, one argument must be
the exceptionObject pointer, which must be preserved to be passed to
_Unwind_Resume.

The landing pad may receive other arguments, for instance a switch value
indicating the type of the exception. Two scratch registers are reserved for this
use (%eax and %edx).

Rules for Correct Inter-Language Operation

The following rules must be observed for correct operation between languages
and/or run times from different vendors:

An exception which has an unknown class must not be altered by the personal-
ity routine. The semantics of foreign exception processing depend on the language
of the stack frame being unwound. This covers in particular how exceptions from
a foreign language are mapped to the native language in that frame.

If a runtime resumes normal execution, and the caught exception was created
by another runtime, it should call _Unwind_DeleteException. This is true
even if it understands the exception object format (such as would be the case
between different C++ run times).

A runtime is not allowed to catch an exception if the _UA_FORCE_UNWIND
flag was passed to the personality routine.

Example: Foreign Exceptions in C++. In C++, foreign exceptions
can be caught by a catch(...) statement. They can also be
caught as if they were of a __foreign_exception class, defined in
<exception>. The __foreign_exception may have subclasses, such as
__java_exception and __ada_exception, if the runtime is capable of
identifying some of the foreign languages.

The behavior is undefined in the following cases:

53

Intel386 ABI 1.1 – December 7, 2015 – 8:57

• A __foreign_exception catch argument is accessed in any way (in-
cluding taking its address).

• A __foreign_exception is active at the same time as another excep-
tion (either there is a nested exception while catching the foreign exception,
or the foreign exception was itself nested).

• uncaught_exception(), set_terminate(), set_unexpected(),
terminate(), or unexpected() is called at a time a foreign excep-
tion exists (for example, calling set_terminate() during unwinding
of a foreign exception).

All these cases might involve accessing C++ specific content of the thrown
exception, for instance to chain active exceptions.

Otherwise, a catch block catching a foreign exception is allowed:

• to resume normal execution, thereby stopping propagation of the foreign
exception and deleting it, or

• to re-throw the foreign exception. In that case, the original exception object
must be unaltered by the C++ runtime.

A catch-all block may be executed during forced unwinding. For instance, a
longjmp may execute code in a catch(...) during stack unwinding. However,
if this happens, unwinding will proceed at the end of the catch-all block, whether
or not there is an explicit re-throw.

Setting the low 4 bytes of exception class to C++\0 is reserved for use by C++
run-times compatible with the common C++ ABI.

54

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Chapter 5

Conventions

1

1This chapter is used to document some features special to the Intel386 ABI. The different
sections might be moved to another place or removed completely.

55

Intel386 ABI 1.1 – December 7, 2015 – 8:57

5.1 C++
For the C++ ABI we will use the IA-64 C++ ABI and instantiate it appropriately.
The current draft of that ABI is available at:
http://mentorembedded.github.io/cxx-abi/

56

Intel386 ABI 1.1 – December 7, 2015 – 8:57

http://mentorembedded.github.io/cxx-abi/

Chapter 6

Intel MPX Extension

Intel MPX (Memory Protection Extensions) provides 4 64-bit wide bound reg-
isters (%bnd0 - %bnd3). For purpose of function return, the lower 32 bits of
%bnd0 specify lower bound of function return, and the upper 32 bits specify up-
per bound of function return. The upper bound is represented in one’s complement
form.

6.1 Parameter Passing and Returning of Values

6.1.1 Bounds Passing
Intel MPX provides ISA extensions that allow passing bounds for a pointer argu-
ment that specify memory area that may be legally accessed by dereferencing the
pointer. This paragraph desribes how the bounds are passed to the callee.

Figure 6.1: Bound Register Usage

Preserved across
Register Usage function calls

%bnd0 used to return bounds of pointer return
value

No

%bnd1–%bnd3 scratch registers No

57

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Several functions used in the description below are defined as follows:

BOUND_MAP_STORE(bnd, addr, ptr) This function executes Intel MPX bndstx
instruction. ptr argument is used to initialize index field of the memory
operand of the bndstx instruction, addr is encoded in base and/or dis-
placement fields of the memory operand, bnd is encoded in the register
operand.

BOUND_MAP_LOAD(addr, ptr) This function executes Intel MPX bndldx
instruction. ptr argument is used to initialize index field of the memory
operand of the bndldx instruction, addr is encoded in base and/or dis-
placement fields of the memory operand.

The bounds associated with each pointer contained in the fourbyte are passed
in a CPU defined manner by executing BOUND_MAP_STORE(bnd, addr,
ptr) function, where bnd is the current bounds of the pointer argument, addr
is the address of the pointer argument’s stack location, ptr is the actual value of
the pointer argument. If the fourbyte may contain parts of partially overlapping
pointers, then bounds associated with the pointers are ignored and special bounds
that allow accessing all memory are passed for such pointers. The callee fetches
the passed bounds using BOUND_MAP_LOAD(addr, ptr), where addr is the
same address passed to the corresponding BOUND_MAP_STORE in the caller, and
ptr is the actual value of the pointer parameter fetched by the callee from a stack
location.

When passing arguments with bounds to functions, function prototypes must
be provided. Otherwise, the run-time behavior is undefined.

6.1.2 Returning of Bounds
The returning of bounds is done according to the following algorithm:

1. When the value is returned in memory, on return %bnd0 must contain
bounds of the “hidden” first argument that has been passed in by the caller.

2. When a pointer value is returned, on return %bnd0 must contain bounds of
the pointer value.

58

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Appendix A

Linker Optimization

This chapter describes optimizations which may be performed by linker.

A.1 Combine GOTPLT and GOT Slots
In the small and medium models, when there are both PLT and GOT references to
the same function symbol, normally linker creates a GOTPLT slot for PLT entry
and a GOT slot for GOT reference. A run-time JUMP_SLOT relocation is created
to update the GOTPLT slot and a run-time GLOB_DAT relocation is created to
update the GOT slot. Both JUMP_SLOT and GLOB_DAT relocations apply the
same symbol value to GOTPLT and GOT slots, respectively, at run-time.

As an optimization, linker may combine GOTPLT and GOT slots into a single
GOT slot and remove the run-time JUMP_SLOT relocation. It replaces the regular
PLT entry:

Figure A.1: Procedure Linkage Table Entry Via GOTPLT Slot

.PLT: jmp [GOTPLT slot]
pushl relocation index
jmp .PLT0

with an GOT PLT entry with an indirect jump via the GOT slot:

59

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Figure A.2: Procedure Linkage Table Entry Via GOT Slot

.PLT: jmp [GOT slot]
nop

and resolves the PLT reference to the GOT PLT entry. Indirect jmp is an 5-byte
instruction. nop can be encoded as a 3-byte instruction or a 11-byte instruction
for 8-byte or 16-byte PLT slot. A separate PLT with 8-byte slots may be used for
this optimization.

This optimization isn’t applicable to the STT_GNU_IFUNC symbols since
their GOTPLT slots are resolved to the selected implementation and their GOT
slots are resolved to their PLT entries.

This optimization must be avoided if pointer equality is needed since the sym-
bol value won’t be cleared in this case and the dynamic linker won’t update the
GOT slot. Otherwise, the resulting binary will get into an infinite loop at run-time.

A.2 Optimize R_386_GOT32X Relocation
The Intel386 instruction encoding supports converting certain instructions on mem-
ory operand with R_386_GOT32X relocation against symbol, foo, into a differ-
ent form on immediate operand if foo is defined locally.

Convert call, jmp and mov Convert memory operand of call, jmp and mov
into immediate operand.

Table A.1: Call, Jmp and Mov Conversion

Memory Operand Immediate Operand
call *foo@GOT(%reg) nop call foo
call *foo@GOT(%reg) call foo nop
jmp *foo@GOT(%reg) jmp foo nop
mov foo@GOT(%reg1), %reg2 lea foo@GOTOFF(%reg1), %reg2

60

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Convert Test and Binop Convert memory operand of call, jmp, mov, test
and binop into immediate operand, where binop is one of adc, add,
and, cmp, or, sbb, sub, xor instructions, when position-independent
code is disabled.

Table A.2: Test and Binop Conversion

Memory Operand Immediate Operand
call *foo@GOT nop call foo
call *foo@GOT call foo nop
jmp *foo@GOT jmp foo nop
mov foo@GOT, %reg lea foo, %reg
test %reg, foo@GOT test $foo, %reg
binop foo@GOT, %reg binop $foo, %reg
call *foo@GOT(%reg) nop call foo
call *foo@GOT(%reg) call foo nop
jmp *foo@GOT(%reg) jmp foo nop
mov foo@GOT(%reg1), %reg2 lea foo, %reg2
test %reg1, name@GOT(%reg2) test $foo, %reg1
binop name@GOT(%reg1), %reg2 binop $foo, %reg2

61

Intel386 ABI 1.1 – December 7, 2015 – 8:57

Index

_UA_CLEANUP_PHASE, 41
_UA_FORCE_UNWIND, 40
_UA_SEARCH_PHASE, 41
_Unwind_Context, 40
_Unwind_DeleteException, 39
_Unwind_Exception, 40
_Unwind_ForcedUnwind, 39, 40
_Unwind_GetCFA, 39
_Unwind_GetGR, 39
_Unwind_GetIP, 39
_Unwind_GetLanguageSpecificData, 39
_Unwind_GetRegionStart, 39
_Unwind_RaiseException, 39, 40
_Unwind_Resume, 39
_Unwind_SetGR, 39
_Unwind_SetIP, 39

auxiliary vector, 20

boolean, 9
byte, 7

C++, 56
Call Frame Information tables, 39
Convert call, jmp and mov, 60
Convert Test and Binop, 61

double quadword, 7
doubleword, 7
DWARF Debugging Information Format, 39

62

Intel386 ABI 1.1 – December 7, 2015 – 8:57

eightbyte, 7
exec, 18

fourbyte, 7

halfword, 7

longjmp, 40

Procedure Linkage Table, 35

quadword, 7

sixteenbyte, 7
size_t, 9

terminate(), 41
Thread-Local Storage, 37
twobyte, 7

Unwind Library interface, 39

word, 7

63

Intel386 ABI 1.1 – December 7, 2015 – 8:57

	About this Document
	Scope
	Related Information

	Low Level System Information
	Machine Interface
	Data Representation

	Function Calling Sequence
	Registers
	The Stack Frame
	Parameter Passing and Returning Values
	Variable Argument Lists

	Process Initialization
	Initial Stack and Register State
	Thread State
	Auxiliary Vector

	DWARF Definition
	DWARF Release Number
	DWARF Register Number Mapping

	Stack Unwind Algorithm

	Object Files
	Sections
	Special Sections
	EH_FRAME sections

	Symbol Table
	Relocation
	Relocation Types

	Libraries
	Unwind Library Interface
	Exception Handler Framework
	Data Structures
	Throwing an Exception
	Exception Object Management
	Context Management
	Personality Routine

	Conventions
	C++

	Intel MPX Extension
	Parameter Passing and Returning of Values
	Bounds Passing
	Returning of Bounds

	Linker Optimization
	Combine GOTPLT and GOT Slots
	Optimize R_386_GOT32X Relocation

